首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   979篇
  免费   138篇
  国内免费   19篇
  2024年   3篇
  2023年   6篇
  2022年   17篇
  2021年   18篇
  2020年   35篇
  2019年   34篇
  2018年   40篇
  2017年   35篇
  2016年   41篇
  2015年   49篇
  2014年   54篇
  2013年   64篇
  2012年   35篇
  2011年   31篇
  2010年   35篇
  2009年   29篇
  2008年   21篇
  2007年   31篇
  2006年   24篇
  2005年   35篇
  2004年   53篇
  2003年   41篇
  2002年   34篇
  2001年   30篇
  2000年   45篇
  1999年   40篇
  1998年   37篇
  1997年   30篇
  1996年   17篇
  1995年   10篇
  1994年   9篇
  1993年   14篇
  1992年   13篇
  1991年   18篇
  1990年   6篇
  1989年   20篇
  1988年   10篇
  1987年   12篇
  1986年   11篇
  1985年   8篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   3篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1972年   1篇
  1950年   1篇
排序方式: 共有1136条查询结果,搜索用时 31 毫秒
1.
《Cell reports》2020,30(1):164-172.e4
  1. Download : Download high-res image (143KB)
  2. Download : Download full-size image
  相似文献   
2.
3.
4.
Abstract

Recent structures of the potassium channel provide an essential beginning point for explaining how the pore is gated between open and closed conformations by changes in membrane voltage. Yet, the molecular details of this process and the connections to transmembrane gradients are not understood. To begin addressing how changes within a membrane environment lead to the channel’s ability to sense shifts in membrane voltage and to gate, we performed double-bilayer simulations of the Kv1.2 channel. These double-bilayer simulations enable us to simulate realistic voltage drops from resting potential conditions to depolarized conditions by changes in the bath conditions on each side of the bilayer. Our results show how the voltage sensor domain movement responds to differences in transmembrane potential. The initial voltage sensor domain movement, S4 in particular, is modulated by the gating charge response to changes in voltage and is initially stabilized by the lipid headgroups. We show this response is directly coupled to the initial stages of pore domain motion. Results presented here provide a molecular model for how the pre-gating process occurs in sequential steps: Gating charge response, movement and stabilization of the S4 voltage sensor domain, and movement near the base of the S5 region to close the pore domain.  相似文献   
5.
Summary The mitochondrial outer membrane contains voltagegated channels called VDAC that are responsible for the flux of metabolic substrates and metal ions across this membrane. The addition of micromolar quantities of aluminum chloride to phospholipid membranes containing VDAC channels greatly inhibits the voltage dependence of the channels' permeability. The channels remain in their high conducting (open) state even at high membrane potentials. An analysis of the change in the voltage-dependence parameters revealed that the steepness of the voltage dependence decreased while the voltage needed to close half the channels increased. The energy difference between the open and closed states in the absence of an applied potential did not change. Therefore, the results are consistent with aluminum neutralizing the voltage sensor of the channel. pH shift experiments showed that positively charged aluminum species in solution were not involved. The active form was identified as being either (or both) the aluminum hydroxide or the tetrahydroxoaluminate form. Both of these could reasonably be expected to neutralize a positively charged voltage sensor. Aluminum had no detectable effect of either single-channel conductance or selectivity, indicating that the sensor is probably not located in the channel proper and is distinct from the selectivity filter.  相似文献   
6.
Summary The voltage clamp technique is a powerful method for studying the physiology of excitable membrane. This technique has made possible the determination of ionic responses generated by activation of either receptor-mediated or voltage-dependent processes. The development of the whole-cell, tight-seal voltage clamp method has allowed the analysis and examination of membrane physiology at the single cell level. The method allows the characterization of voltage-dependent ionic conductances both at the macroscopic (whole-cell) and at the microscopic (unitary conductance or single channel) level in cells less than 10 µm in diameter, a feat difficult to achieve with conventional fine-tipped micropipettes.In this paper, several methologies used for culturing neuronal and non-neuronal cells in the laboratory are described. A comparison between the two modes of voltage clamp using blunt-tipped patch-microelectrodes, the switching (discontinuous) and the non-switching (continuous) modes, of the Axoclamp-2A amplifier is made. Some results on membrane currents obtained from neuronal and non-neuronal cells using the single electrode whole-cell tight-seal voltage clamp is illustrated. The possible existence of two inactivating K+ currents, one dependent on Ca++ the other is not, is discussed.  相似文献   
7.
The time constant of the process producing the delay in Na inactivation development as determined by the two pulse method (delay) was extracted and compared to that of the slowest Na activation process 3 for the I Na during the conditioning pulse of that same determination. delay and two pulse inactivation c values were computer generated using a nonlinear least squares algorithm. h and single pulse inactivation h values were independently generated for each determination also with the aid of the computer using the same non-linear least squares algorithm. In one determination at 2 mV, c was 4.68 and delay 0.494 ms while h was 4.70 and 3 0.491 ms for a c/h of 0.996 and a delay/3 of 1.006. Mean delay/3 from five determinations in four axons, both Cs and K perfused, and spanning a potential range of-27 to 2mV was 1.068. The precursor process to inactivation is channel opening. Some fraction of channels presumably inactivate via another route where prior channel opening is not required.  相似文献   
8.
Patch-clamp recordings from ventricular myocytes of neonatal rats identified ionic channels that open in response to membrane stretch caused by negative pressures (1 to 6 cm Hg) in the electrode. The stretch response, consisting of markedly increased channel opening frequency, was maintained, with some variability, during long (>40 seconds) stretch applications. The channels have a conductance averaging 120 pS in isotonic KCl, have a mean reversal potential 31 mV depolarized from resting membrane potential, and do not require external Ca++ for activation. The channels appear to be relatively non-selective for cations. Since they are gated by physiological levels of tension, stretch-activated channels may represent, a cellular control system wherein beat-to-beat tension and/or osmotic balance modulate a portion of membrane conductance.Abbreviations SACs stretch-activated channels - HEPES 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonic acid  相似文献   
9.
Summary Stage V and VI (Dumont, J.N., 1972.J. Morphol. 136:153–180) oocytes ofXenopus laevis were treated with collagenase to remove follicular cells and were placed in K-free solution for 2 to 4 days to elevate internal [Na]. Na/K pump activity was studied by restoring the eggs to normal 3mm K Barth's solution and measuring membrane current-voltage (I–V) relationships before and after the addition of 10 m dihydroouabain (DHO) using a two-microelectrode voltage clamp. Two pulse protocols were used to measure membraneI–V relationships, both allowing membrane currents to be determined twice at each of a series of membrane potentials: (i) a down-up-down sequence of 5 mV, 1-sec stair steps and (ii) a similar sequence of 1-sec voltage pulses but with consecutive pulses separated by 4-sec recovery periods at the holding potential (–40 mV). The resulting membraneI–V relationships determined both before and during exposure to DHO showed significant hysteresis between the first and second current measurements at each voltage. DHO difference curves also usually showed hysteresis indicating that DHO caused a change in a component of current that varied with time. Since, by definition, the steady-state Na/K pumpI–V relationship must be free of hysteresis, the presence of hysteresis in DHO differenceI–V curves can be used as a criterion for excluding such data from consideration as a valid measure of the Na/K pumpI–V relationship. DHO differenceI–V relationships that did not show hysteresis were sigmoid functions of membrane potential when measured in normal (90mm) external Na solution. The Na/K pump current magnitude saturated near 0 mV at a value of 1.0–1.5 A cm–2, without evidence of negative slope conductance for potentials up to +55 mV. The Na/K pump current magnitude in Na-free external solution was approximately voltage independent. Since these forward-going Na/K pumpI–V relationships do not show a region of negative slope over the voltage range –110 to +55 mV, it is not necessary to postulate the existence of more than one voltage-dependent step in the reaction cycle of the forward-going Na/K pump.  相似文献   
10.
Summary Colicin Ia forms voltage-dependent channels when incorporated into planar lipid bilayers. A membrane containing many Colicin Ia channels shows a conductance which is turned on when high positive voltages (>+10 mV) are applied to thecis side (side to which the protein is added). The ionic current flowing through the membrane in response to a voltage step shows at first an exponential and then a linear rise with time. The relationship between the steady-state conductance, achieved immediately after the exponential portion, and voltage is S-shaped and is adequately fit by a Boltzmann distribution. The time constant () of the exponential is also dependent on voltage, and the relation between these two parameters is asymmetric aroundV o (voltage at which half of the channels are open). In both cases the steepness of the voltage dependence, a consequence of the number of effective gating particles (n) present in the channel, is greatly influenced by the pH of the bathing solutions. Thus, increasing the pH leads to a reduction inn, while acidic pH's have the opposite effects. This result is obtained either by changing the pH on both sides of the membrane or on only one side, be itcis orrans. On the other hand, changing pH on only one side by addition of an impermeant buffer fails to induce any change inn. At the single-channel level, pH had an effect both on the unitary conductance, doubling it in going from pH 4.5 to 8.2, as well as on the fraction of time the channels stay open,F (v). For a given voltage,F (v) is clearly diminished by increasing the pH. This titration of the voltage sensitivity leads to the conclusion that gating in the Colicin Ia molecule is accomplished by charged amino-acid residues present in the protein molecule. Our results also support the notion that these charged groups are inside the aqueous portion of the channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号