首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
  2006年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Abstract. Ovarian ultrastructure and oogenesis in two pycnogonid species, Cilunculus armatus and Ammothella biunguiculata , were investigated. The ovary is morphologically and functionally divided into trunk and pedal parts. The former represents the germarium and contains very young germ cells in a pachytene or postpachytene phase, whereas the latter houses developing previtellogenic and vitellogenic oocytes and represents the vitellarium. Intercellular bridges were occasionally found between young (trunk) germ cells. This indicates that in pycnogonids, as in other animal groups, at the onset of oogenesis clusters of germ cells are generated. As nurse cells are absent in the ovaries of investigated species, the clusters must secondarily split into individual oocytes. In the vitellarium, the oocytes are located outside the ovary. Each oocyte is connected to the ovarian tissue by a stalk composed of several somatic cells. The stalk cells directly associated with the oocyte are equipped with irregular projections that reach the oocyte plasma membrane. This observation suggests that the stalk cells may play a nutritive role. The ooplasm of vitellogenic oocytes comprises mitochondria, free ribosomes, stacks of annulate lamellae, active Golgi complexes, and vesicles derived from these complexes. Within the latter, numerous electron-dense bodies are present. We suggest that these bodies contribute to yolk formation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号