首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   1篇
  2021年   1篇
  2016年   1篇
  2014年   1篇
  2012年   1篇
  2010年   1篇
  2007年   1篇
  2006年   3篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   3篇
  1994年   1篇
  1988年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有19条查询结果,搜索用时 187 毫秒
1.
This review compares published surveys of microbial populations in plant tissue and cell cultures with the microbial saprophytes and pathogens found on field grown plants and microbial populations in the laboratory environment. From this comparison and the measured reduction in contamination after improvements in working practices in the laboratory, conclusions can be drawn about the importance of the explant and the laboratory as sources of contamination.

Mechanisms of pathogenicity in vitro are described to explain why bacteria, fungi, and yeasts that are not pathogenic to plants in the field become pathogens in plant tissue cultures. Conversely, plant metabolism and its effect on the tissue culture environment are described to explain why prokaryotes, viruses, and viroids that cause disease in the field can stay latent in vitro.

Detection methods for latent contaminants in plant tissue cultures are summarized, and the strategies and methods for prevention or treatment of contamination are discussed.  相似文献   

2.
The polymerase chain reaction (PCR) revolutionized molecular biology to a similar extent as the discovery of plasmids and restriction endonucleases. However, there are some limitations to the use of PCR. Transgenic plants containing potato spindle tuber viroid (PSTVd) cDNA constructs, demonstrated to become de novo methylated upon PSTVd infection, represent a good example to illustrate the advantages of PCR. PSTVd is a 359 nt long autonomously replicating plant pathogenic RNA where all of its enzymatic requirements are entirely provided by the host cell. In addition, viroids that propagate without a DNA intermediate barely tolerate nucleotide substitutions of their RNA genome without losing infectivity. PCR is the method of choice to characterize the sequence context of genome-integrated viroid cDNA or of reverse transcribed PSTVd RNA, and can hardly be replaced by any alternative procedure. Furthermore, the precise examination of DNA methylation patterns (genomic sequencing) is entirely dependent on PCR. In contrast, the use of PCR is critical for the determination of copy number and arrangement of transgene constructs. Here, the advantages and disadvantages of PCR are discussed and protocols for PCR amplification of cDNA, genomic DNA, and bisulfite-treated DNA from transgenic plants are presented.  相似文献   
3.
Chrysanthemum chlorotic mottle viroid (CChMVd) is a small RNA (398-401nt) with hammerhead ribozymes in both polarity strands that mediate self-cleavage of the oligomeric RNA intermediates generated in a rolling-circle mechanism of replication. Within the in vivo branched RNA conformation of CChMVd, a tetraloop has been identified as a major determinant of pathogenicity. Here we present a detailed study of this tetraloop by site-directed mutagenesis, bioassay of the CChMV-cDNA clones and analysis of the resulting progenies. None of the changes introduced in the tetraloop, including its substitution by a triloop or a pentaloop, abolished infectivity. In contrast to observations for other RNAs, the thermodynamically stable GAAA tetraloop characteristic of non-symptomatic CChMVd-NS strains was not functionally interchangeable for other stable tetraloops of the UNCG family, suggesting that the sequence, rather than the structure, is the major factor governing conservation of this motif. In most cases, the changes introduced initially led to symptomless infections, which eventually evolved to be symptomatic concurrently with the prevalence in the progeny of the UUUC tetraloop characteristic of symptomatic CChMVd-S strains. Only in one case did the GAAA tetraloop emerge and eventually dominate the progeny in infected plants that were non-symptomatic. These results revealed two major fitness peaks in the tetraloop (UUUC and GAAA), whose adjacent stem was also under strong selection pressure. Co-inoculations with CChMVd-S and -NS variants showed that only when the latter was in a 100- or 1000-fold excess did the infected plants remain symptomless, confirming the higher biological fitness of the S variant and explaining the lack of symptom expression previously observed in cross-protection experiments.  相似文献   
4.
5.
Viroids are plant subviral pathogens whose genomes are constituted by a single-stranded and covalently closed small RNA molecule that does not encode for any protein. Despite this genomic simplicity, they are able of inducing devastating symptoms in susceptible plants. Most of the 29 described viroid species fold into a rodlike or quasi-rodlike structure, whereas a few of them fold as branched structures. The shape of these RNA structures is perhaps one of the most characteristic properties of viroids and sometimes is considered their only phenotype. Here we use RNA thermodynamic secondary structure prediction algorithms to compare the mutational robustness of all viroid species. After characterizing the statistical properties of the distribution of mutational effects on structure stability and the wideness of neutral neighborhood for each viroid species, we show an evolutionary trend toward increased structural robustness during viroid radiation, giving support to the adaptive value of robustness. Differences in robustness among the 2 viroid families can be explained by the larger fragility of branched structures compared with the rodlike ones. We also show that genomic redundancy can contribute to the robustness of these simple RNA genomes.  相似文献   
6.
7.
A procedure for the purification of viroid RNA from tomato plants is described which yields up to a milligram of viroid RNA of gel electrophoretic homogeneity within 2 days. This technique is at least three times as fast as previous methods and is generally applicable to other RNA species. Plant material was homogenized and phenol extracted. In a Cs2SO4 density gradient, viroid RNA together with low-molecular-weight RNA, was separated from large single-stranded RNA, DNA, polysaccharides, polyphenols, and other compounds. The separation is based on the differences in the buoyant density and on the selective precipitation of large single-stranded RNA in Cs2SO4. Further purification of viroid RNA was achieved by HPLC over a weak anion exchanger linked to silica gel of optimized pore size. The elution was carried out by a salt gradient with complete exclusion of divalent metal ions. The procedures were applied to whole plants, leaves, stems, roots, cells, and protoplasts. The yields of nucleic acids at the different steps of purification are given for leaves, stems, and roots.  相似文献   
8.
Cell-to-cell and long-distance trafficking of RNA is a rapidly evolving frontier of integrative plant biology that broadly impacts studies on plant growth and development, spread of infectious agents and plant defense responses. The fundamental questions being pursued at the forefronts revolve around function, mechanism and evolution. In the present review, we will first use specific examples to illustrate the biological importance of cell-to-cell and long-distance trafficking of RNA. We then focus our discussion on research findings obtained using viroids that have advanced our understanding of the underlying mechanisms involved in RNA trafficking. We further use viroid examples to illustrate the great diversity of trafficking machinery evolved by plants, as well as the promise for new insights in the years ahead. Finally, we discuss the prospect of integrating findings from different experimental systems to achieve a systems-based understanding of RNA trafficking function, mechanism and evolution.  相似文献   
9.
10.
Taxonomy Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling‐circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid.Physical properties Hop stunt viroid consists of a single‐stranded, circular RNA of 295–303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod‐like or quasi‐rod‐like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region.Hosts and symptomsHSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide.TransmissionHSVd is transmitted mechanically and by seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号