首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
  14篇
  2020年   1篇
  2015年   1篇
  2014年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2001年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
High CO2 concentrations stimulate net photosynthesis by increasing CO2 substrate availability for Rubisco, simultaneously suppressing photorespiration. Previously, we reported that silencing the chloroplast vesiculation (cv) gene in rice increased source fitness, through the maintenance of chloroplast stability and the expression of photorespiration-associated genes. Because high atmospheric CO2 conditions diminished photorespiration, we tested whether CV silencing might be a viable strategy to improve the effects of high CO2 on grain yield and N assimilation in rice. Under elevated CO2, OsCV expression was induced, and OsCV was targeted to peroxisomes where it facilitated the removal of OsPEX11-1 from the peroxisome and delivered it to the vacuole for degradation. This process correlated well with the reduction in the number of peroxisomes, the decreased catalase activity and the increased H2O2 content in wild-type plants under elevated CO2. At elevated CO2, CV-silenced rice plants maintained peroxisome proliferation and photorespiration and displayed higher N assimilation than wild-type plants. This was supported by higher activity of enzymes involved in NO3 and NH4+ assimilation and higher total and seed protein contents. Co-immunoprecipitation of OsCV-interacting proteins suggested that, similar to its role in chloroplast protein turnover, OsCV acted as a scaffold, binding peroxisomal proteins.  相似文献   
2.
3.
Embryogenic cultures of Dactylis glomerata L. were subjected to NaCl stress by culturing for 4 passages in Schenk and Hildebrandt (SH) medium containing 30 μM dicamba and 200 mM NaCl. Ultrastructural studies indicated invaginations and disruptions of the plasma membrane. Membrane-bound vesicles were observed in the cytoplasm of NaCl treated cells and their occurrence were increased with the culture age.  相似文献   
4.
5.
Mammalian spermatozoa must undergo many changes to be able to fertilize the oocyte. One of these changes, the acrosome reaction, has been established as a requisite for gamete membrane fusion to occur; it consists of the fusion and vesiculation of the sperm plasma membrane with the outer acrosomal membrane of the principal segment of the acrosome. Reaction of the equatorial segment has occasionally been observed. The objective of the present work was to determine whether the presence of the sperm plasma membrane over the equatorial segment is necessary for gamete membrane fusion to occur. Golden hamster spermatozoa were capacitated in vitro in TAPL 10K, and the maximum possible percentage of acrosome reaction was determined at 82.79% + 1.69% SD (P = 0.27; r = 0.21). Ultrastructural studies showed that 93.6% of the reacted spermatozoa in this population had their principal and equatorial segments reacted. The fertilizing ability of these spermatozoa was assayed using zona-free hamster oocytes. The percentage of fertilized ova obtained was 98.8% (308/312). Ultrastructural studies snowed the presence of spermatozoa with reacted equatorial segment inside the cytoplasm of immature oocytes. The evidence presented in this work demonstrates that the plasma membrane of spermatozoa with reacted equatorial segment retains its ability to fuse with the oocyte.  相似文献   
6.
Membrane vesicles can be obtained from epimastigote forms of Trypanosoma cruzi by incubating cells with either cross-linking reagents or acid pH. Acetate, phtalate or citrate, at pH 4.0, but not at higher pH values, were able to induce plasma membrane vesiculation. Vesicles have been purified by sucrose density centrifugation and their membrane origin was demonstrated by the following criteria: (a) Vesicles are 5–10 times richer in protein-bound iodine when they are prepared from cells previously labeled with 131I by the lactoperoxidase catalysed reaction. (b) Electron microscopy of vesiculating cells shows physical continuity between cell plasma membrane and vesicle membrane. (c) Antibodies prepared against purified vesicles are able to agglutinate epimastigote forms of T. cruzi with sera dilutions up to 1 : 256 to 1 : 512. (d) Freeze-fracture studies of the purified vesicles have shown images of faces P and E compatible with known images of the intact cell plasma membrane.Typical preparations of acetate vesicles present the following characteristics: total carbohydrate : protein = 1.5–2.0; orcinol : protein = 0.07 and absence of diphenylamine reaction. Vesicles contain 0.2–0.5% and 0.3–1.0% of the total homogenate protein and carbohydrate, respectively. The presence of 10 major protein bands and a 30–50-fold enrichment of the four sugar-containing macromolecules present in epimastigote forms of T. cruzi have been demonstrated in these preparations.  相似文献   
7.
In artificial phospholipid bilayers, dual measurements of laurdan steady-state anisotropy and emission spectra can be used to identify the presence of liquid ordered phases. Human erythrocytes were used as a model to test whether similar measurements could be applied to biological samples. Specifically, laurdan anisotropy and emission spectra were obtained from native erythrocytes before and after treatment with calcium ionophore and from the microvesicles (known to be enriched in liquid ordered domains) shed from the cells during calcium entry. Spectral and anisotropy data were consistent with an increased order and reduced fluidity of erythrocyte membrane lipids upon ionophore treatment. Microvesicle membranes appeared more ordered than native erythrocytes and similar to ionophore-treated cells based on laurdan emission. In contrast, the anisotropy value was lower in microvesicles compared to ionophore-treated cells, suggesting greater probe mobility. Parallel measurements of diphenylhexatriene anisotropy corroborated the laurdan data. These results were consistent with the liquid ordered property of microvesicle membranes based on comparisons to behavior in artificial membranes. Two-photon microscopy was used to examine the distribution of laurdan fluorescence along the surface of erythrocyte membranes before and after ionophore treatment. A dual spatial analysis of laurdan anisotropy, as revealed by the distribution of laurdan emission spectra, and intensity excited by polarized light suggested that the plasma membranes of ionophore-treated erythrocytes may also exhibit elevated numbers of liquid ordered domains.  相似文献   
8.
Abstract Video recordings of interference phase contrast microscopy were used to study plasmalemma deletion during plasmolysis in hardened and non-hardened suspension cultured cells of Brassica napus, alfalfa, and cells isolated from rye seedlings. Although different hardening regimes and different cells were used, the responses to plasmolysis were consistent. Hardened cells uncoupled the volume to surface area ratio during plasmolysis both by forming a large number of strands between the cell wall and protoplast and by leaving rivulet-like networks of membranes on the cell wall surface. Tonoplast membrane was deleted as sac-like intrusions into the vacuole. Non-hardened cells produced few strands during plasmolysis. They also deleted plasmalemma and tonoplast into the vacuole as endocytotic vesicles. During deplasmolysis of hardened cells both the individual membrane strands and the rivulets of membrane material vesiculated into strings of vesicles. The vesicles were osmotically active and were re-incorporated into the expanding protoplast. Conversely, deplasmolysis in non-hardened cells resulted in few osmotically active vesicles and many broken strands. The vacuolar sac-like intrusions in hardened cells were re-incorporated into the vacuole whereas the endocytotic vesicles in non-hardened cells were not re-incorporated. Therefore, the non-hardened cells underwent expansion-induced lysis.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号