首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4382篇
  免费   276篇
  国内免费   160篇
  2023年   65篇
  2022年   88篇
  2021年   130篇
  2020年   135篇
  2019年   230篇
  2018年   164篇
  2017年   115篇
  2016年   115篇
  2015年   108篇
  2014年   284篇
  2013年   289篇
  2012年   175篇
  2011年   231篇
  2010年   147篇
  2009年   177篇
  2008年   172篇
  2007年   205篇
  2006年   180篇
  2005年   188篇
  2004年   133篇
  2003年   116篇
  2002年   139篇
  2001年   116篇
  2000年   122篇
  1999年   77篇
  1998年   74篇
  1997年   74篇
  1996年   58篇
  1995年   48篇
  1994年   47篇
  1993年   56篇
  1992年   47篇
  1991年   42篇
  1990年   29篇
  1989年   34篇
  1988年   37篇
  1987年   40篇
  1986年   32篇
  1985年   52篇
  1984年   58篇
  1983年   29篇
  1982年   50篇
  1981年   36篇
  1980年   23篇
  1979年   20篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1974年   4篇
  1973年   3篇
排序方式: 共有4818条查询结果,搜索用时 15 毫秒
1.
The effect of dolichyl monophosphate on the permeability properties of dimyristoylphosphatidylcholine bilayers to alkaline cations, Ca2+ and glucose has been determined by stop-flow spectrophotometry. The results show that, in con trast to free dolichol effects, the monophosphate derivative increased the permeability following a decreasing order of the permeating particle size. Phase diagrams indicate that dolichyl monophosphate is fully incorporated into the phosphatidylcholine bilayer around 0.75% weight/weight ratio. For these ratios, the permeation of ions is higher in the gel than in the liquid crystalline state.  相似文献   
2.
《Developmental cell》2022,57(11):1383-1399.e7
  1. Download : Download high-res image (247KB)
  2. Download : Download full-size image
  相似文献   
3.
The aim of the study was to explore the mechanism of mesenchymal stem cell‐derived exosomes (MSC‐EXO) to protect against experimentally induced pulmonary hypertension (PH). Monocrotaline (MCT)‐induced rat model of PH was successfully established by a single intraperitoneal injection of 50 mg/kg MCT, 3 weeks later the animals were treated with MSC‐EXO via tail vein injection. Post‐operation, our results showed that MSC‐EXO could significantly reduce right ventricular systolic pressure (RVSP) and the right ventricular hypertrophy index, attenuate pulmonary vascular remodelling and lung fibrosis in vivo. In vitro experiment, the hypoxia models of pulmonary artery endothelial cell (PAEC) and pulmonary vascular smooth muscle cell (PASMC) were used. We found that the expression levels of Wnt5a, Wnt11, BMPR2, BMP4 and BMP9 were increased, but β‐catenin, cyclin D1 and TGF‐β1 were decreased in MSC‐EXO group as compared with MCT or hypoxia group in vivo or vitro. However, these increased could be blocked when cells were transfected with Wnt5a siRNA in vitro. Taken together, these results suggested that the mechanism of MSC‐EXO to prevent PH vascular remodelling may be via regulation of Wnt5a/BMP signalling pathway.  相似文献   
4.
Aim We evaluate how closely diversity patterns of endemic species of vascular plants, beetles, butterflies, molluscs and spiders are correlated with each other, and to what extent similar environmental requirements or survival in common glacial refugia and comparable dispersal limitations account for their existing congruence. Location Austria. Methods We calculated pairwise correlations among species numbers of the five taxonomic groups in 1405 cells of a 3′ × 5′ raster (c. 35 km2) using the raw data as well as the residuals of regression models that accounted for: (1) environmental variables, (2) environmental variables and the occurrence of potential refugia during the Last Glacial Maximum, or (3) environmental variables, refugia and spatial filters. Results Pairwise cross‐taxonomic group Spearman’s rank correlations in the raw data were significantly positive in most cases, but only moderate (0.3 < ρ < 0.5) to weak (ρ < 0.3) throughout. Correlations were closest between plants and beetles, plants and butterflies, and plants and snails, respectively, whereas the distribution of endemic spiders was largely uncorrelated with those of the other groups. Environmental variables explained only a moderate proportion of the variance in endemic richness patterns, and the response of individual groups to environmental gradients was only partly consistent. The inclusion of refugium locations and the spatial filters increased the goodness of model fit for all five taxonomic groups. Moreover, removing the effects of environmental conditions reduced congruence in endemic richness patterns to a lesser extent than did filtering the influence of refugium locations and spatial autocorrelation, except for spiders, which are probably the least dispersal‐limited of the five groups. Main conclusions The moderate to weak congruence of endemic richness patterns clearly limits the usefulness of a surrogacy approach for designating areas for the protection of regional endemics. On the other hand, our results suggest that dispersal limitations still shape the distributions of many endemic plant, snail, beetle and butterfly species, even at the regional scale; that is, survival in shared refugia and subsequent restricted spread retain a detectable signal in existing correlations. Concentrating conservation efforts on well‐known Pleistocene refugia hence appears to be a reasonable first step towards a strategy for protecting regional endemics of at least the less mobile invertebrate groups.  相似文献   
5.
6.
The aim of this study was to perform a pilot histological and quantitative analysis of the blood vessels accompanying the epicardial nerves (vasa nervorum) in the porcine hearts. Twenty healthy porcine hearts were used in this study. The blood vessels were analyzed by light microscopy using four different staining techniques in transverse sections taken from the upper, middle, and lower segments of the anterior part of the interventricular region and the adjacent parts of the right and left ventricles containing epicardial nerves and the endocardial peripheral parts of the Purkinje fibers. In total, 317 epicardial nerves were detected. The vasa nervorum were present in 75.7% of these nerves. The vasa nervorum resembled arterioles and postcapillary and collecting venules. One hundred and forty nine epicardial nerves were perivascular, located in the adventitia of the anterior interventricular artery and vein. The remaining 168 nerves ran freely through the epicardial interstitium. The presence of the vasa nervorum was not related to topographical location or nerve diameter. Additionally, from a total of 33 analyzed ventricular complexes of Purkinje fibers small blood vessels located in their proximity were identified in only two cases. It can be concluded that the majority of the anterior epicardial nerves of porcine heart possess well-developed vasa nervorum. In contrast, similar blood vessels are rarely present in the vicinity of the Purkinje fibers. The data obtained contribute to a better understanding of the nutrition of the cardiac nerves.  相似文献   
7.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   
8.
A hypothesis is presented that the availability of water for export of nitrogenous products from legume nodules is a major factor limiting the efficiency of symbiotic nitrogen fixation. Water for export of solutes in the xylem probably depends largely on the import of water and reduced carbon in the phloeum, and one function of respiration may be to dispose of reduced carbon in order to increase the supply of water. A second hypothesis presented is that control of gas diffusion in soybean nodules is largely restricted to the cortex nearby the vascular bundles, thus making possible the linkage of solute balances in xylem and phloem with resistance to diffusion. These concepts are used in a re-examination of literature on manipulations of nodules and nodulated plants such as lowering of light levels, water stress, defoliation, stem girdling, and alteration of oxygen supply. The concept of translocation as a major factor limiting efficiency of symbiotic fixation is consistent with the failure of superior rhizobial isolates to improve N input significantly, and this limitation could also prevent exploitation of superior bacterial symbionts in the future  相似文献   
9.
As an increasingly dominant feature in the landscape, transportation corridors are becoming a major concern for bats. Although wildlife–vehicle collisions are considered to be a major source of mortality, other negative implications of roads on bat populations are just now being realized. Recent studies have revealed that bats, like many other wildlife species, will avoid roads rather than cross them. The consequence is that roads act as barriers or filters to movement, restricting bats from accessing critical resources. Our objective was to assess specific features along the commuting route, road, or surrounding landscape (alone or in combination) that exacerbated or alleviated the likelihood of a commuting bat exhibiting an avoidance behavior in response to an approaching vehicle. At 5 frequently used commuting routes bisected by roads, we collected data on vehicles travelling along the roads (such as visibility and audibility), commuting bats (such as height), and composition of the commuting route. We revealed that commuting route structure dictated the frequency at which bats turned back along their commuting routes and avoided the road. We found that gaps (>2 m) in commuting routes, such as the road itself, caused bats to turn away just before they reached the road. Furthermore, we found that turning frequencies of bats increased with vehicle noise levels and the locations at which bats responded to vehicles corresponded with areas where noise levels were greatest, including gaps <2 m. This suggested that bats had a disturbance threshold, and only reacted to vehicles when associated noise reached a certain level. We found that threshold levels for our study species were approximately 88 dB, but this value was likely to vary among species. Thus, our findings indicate that restoring (e.g., replanting native trees and shrubs in gaps) and establishing commuting routes (such as planting tree-lines and wooded hedgerows), as well as creating road-crossing opportunities (such as interlinking canopies) will improve the permeability of a road-dominated landscape to bats. Furthermore, our study highlights the influence of the soundscape. We recommend that effective management and mitigation strategies should take into account the ecological design of the acoustic environment. © 2012 The Wildlife Society.  相似文献   
10.
Using an insoluble inorganic salt precipitation technique, the permeability of cell walls and especially of endodermal Casparian bands (CBs) for ions was tested in young roots of corn (Zea mays) and rice (Oryza sativa). The test was based on suction of either 100 µm CuSO4 or 200 µm K4[Fe(CN)6] into the root from its medium using a pump (excised roots) or transpirational stream (intact seedlings), and subsequent perfusion of xylem of those root segments with the opposite salt component, which resulted in precipitation of insoluble brown crystals of copper ferrocyanide. Under suction, Cu2+ could cross the endodermis apoplastically in both plant species (although at low rates) developing brown salt precipitates in cell walls of early metaxylem and in the region between CBs and functioning metaxylem vessels. Hence, at least Cu2+ did cross the endodermis dragged along with the water. The results suggested that CBs were not perfect barriers to apoplastic ion fluxes. In contrast, ferrocyanide ions failed to cross the mature endodermis of both corn and rice at detectable amounts. The concentration limit of apoplastic copper was 0.8 µm at a perfusion with 200 µm K4[Fe(CN)6]. Asymmetric development of precipitates suggested that the cation, Cu2+, moved faster than the anion, [Fe(CN)6]4–, through cell walls including CBs. Using Chara cell wall preparations (‘ghosts’) as a model system, it was observed that, different from Cu2+, ferrocyanide ions remained inside wall-tubes suggesting a substantially lower permeability of the latter which agreed with the finding of an asymmetric development of precipitates. In both corn and rice roots, there was a significant apoplastic flux of ions in regions where laterals penetrated the endodermis. Overall, the results show that the permeability of CBs to ions is not zero. CBs do not represent a perfect barrier for ions, as is usually thought. The permeability of CBs may vary depending on growth conditions which are known to affect the intensity of formation of bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号