首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2017年   1篇
  2013年   1篇
  2004年   1篇
  1992年   1篇
  1985年   1篇
  1983年   1篇
  1975年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (?OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of ?OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its ?OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of ?OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of ?OH from 1O2, and that spin trap-mediated ?OH generation hardly occurs with DEPMPO.  相似文献   
2.
Photosensitizers newly developed for photodynamic therapy of cancer need to be assessed using accurate methods of measuring reactive oxygen species (ROS). Little is known about the characteristics of the reaction of singlet oxygen (1O2) with spin traps, although this knowledge is necessary in electron spin resonance (ESR)/spin trapping. In the present study, we examined the effect of various reductants usually present in biological samples on the reaction of 1O2 with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The ESR signal of the hydroxyl radical (•OH) adduct of DMPO (DMPO-OH) resulting from 1O2-dependent generation of •OH strengthened remarkably in the presence of reduced glutathione (GSH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), ascorbic acid, NADPH, etc. A similar increase was observed in the photosensitization of uroporphyrin (UP), rose bengal (RB) or methylene blue (MB). Use of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide (DEPMPO) as a spin trap significantly lessened the production of its •OH adduct (DEPMPO-OH) in the presence of the reductants. The addition of DMPO to the DEPMPO-spin trapping system remarkably increased the signal intensity of DEPMPO-OH. DMPO-mediated generation of •OH was also confirmed utilizing the hydroxylation of salicylic acid (SA). These results suggest that biological reductants enhance the ESR signal of DMPO-OH produced by DMPO-mediated generation of •OH from 1O2, and that spin trap-mediated •OH generation hardly occurs with DEPMPO.  相似文献   
3.
4.
5.
We have already reported in Balb C mouse transplantable mammary carcinoma, that uroporphyrin I and III are superior as tumour localizers when compared to hematoporphyrin derivative and a derivative thereof, photofrin II. This study compares the binding of porphyrins to proteins which may be found in tumour cells or stroma to investigate whether there is a common binding determinant. Coproporphyrin III and deuteroporphyrin IX which are non-tumour localizing porphyrins, were also part of the comparative study. The interaction of these porphyrins with acid soluble collagen and acid insoluble collagen, elastin, and fibrin was evaluated, and the binding of uroporphyrin isomers I and III and deuteroporphyrin IX to gelatin and fibrinogen, was also determined. The results suggest that collagen, especially the acid soluble form, and gelatin preferentially bind the four porphyrins which localize in mammary carcinoma tissue. The well reported observations that malignant epithelial cells, including breast cancer, produce collagen and contain a rate-limiting enzyme in collagen biosynthesis would support the notion that de novo synthesis of this protein may in part govern the tumour uptake and retention of porphyrins. Elastin, fibrinogen and fibrin showed non-discriminant binding to the porphyrins under study.  相似文献   
6.
We were the first to report the superiority of uroporphyrin I (UROP I) as a tumour localizer when compared to haematoporphyrin derivative (HPD). In this study, we compared both isomers of UROP, i.e. I and III, in a KHJJ mammary carcinoma mouse model. Six and 18 h after UROP administration, the tumour, skin and gut porphyrin (P) content was quantitated. Tumour UROP I levels were always at least 50% higher than UROP III in tumour, whereas both isomers were barely detectable in the skin and gastrointestinal tract. We then explored the possibility that tumour P uptake might relate in part to the affinity of circulating P to mouse serum proteins (MSP), in particular, the major binding protein constituent, albumin. Copro-P III, deutero-P 2,4 disulphonic acid (DP), proto-P IX (PP) and heptacarboxylic P I (Hepta I) which in our mouse tumour model do not localize in malignant tissue, were compared to UROP I and III. The P was mixed with 0.775 microM human serum albumin (HSA) at different molar ratios (HSA:P range 2-8) and the unbound P concentration quantitated using an Amicon CF-25 membrane cone with centrifugation. The percentage free P was significantly higher for UROP I (92-98%) than III (82-95%) and significantly more than that observed with non-tumour localizing P studied. Similar data were obtained with MSP. This is consistent with the notion that enhanced uptake and retention (particularly UROP I) by malignant neoplastic tissue might reflect a higher affinity for UROP by tumour constituents than by circulating proteins.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
7.
Porphyria cutanea tarda (PCT) and experimental porphyria are characterized by a decreased activity of the enzyme uroporphyrinogen decarboxylase, and accumulation of uroporphyrins and heptacarboxylporphyrins in the liver. Iron (Fe) plays an important role in PCT and experimental porphyria. Biochemically and electron microscopically, we examined the relationship between Fe and porphyrins in liver tissue of C57BL/10 mice made porphyric by administration of iron dextran as Imferon® (IMF), and in liver biopsies of patients with symptomatic PCT. Accumulation of uroporphyrins and heptacarboxylporphyrins, and an increased amount of Fe were observed in livers of mice treated with IMF and in liver biopsies of patients with PCT. In mice treated with IMF, the activity of uroporphyrinogen decarboxylase was decreased. Both in livers of mice treated with IMF and in livers of patients with PCT, needle-like structures, representing uroporphyrin crystals, were observed by electron microscopy. Uroporphyrin crystals and Fe (as ferritin) were observed in the same hepatocyte. Moreover, there was a striking morphological correlation between uroporphyrin crystals and ferritin-Fe, suggesting a role for (ferritin-)Fe in the pathogenesis of porphyria.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号