首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   2篇
  国内免费   3篇
  2023年   1篇
  2022年   2篇
  2020年   5篇
  2019年   8篇
  2018年   4篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   15篇
  2013年   19篇
  2012年   12篇
  2011年   14篇
  2010年   12篇
  2009年   13篇
  2008年   14篇
  2007年   15篇
  2006年   11篇
  2005年   6篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   6篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
  1973年   7篇
  1972年   1篇
  1971年   1篇
排序方式: 共有262条查询结果,搜索用时 15 毫秒
1.
It is now possible to examine in detail exchanges between sister chromatids (SCEs) and to attempt to investigate the relationships of such exchanges to aberration formation and DNA-repair mechanisms. The frequency of SCEs is dramatically increased by chemical mutagens and may reflect the level of DNA damage. Lymphocytes from patients with ataxia telangiectasis (AT) show high levels of spontaneous chromosome damage and are hypersentive to ionising radiations and it was of interest to examine the levels of SCE induced in these cells by various mutagens. The frequencies of SCE after treatment with X=rays or three chemical mutagens were equivalent to those in normal cells. The effects of fluorodeoxyuridine and deoxycytidine on SCE frequencies were also tested.  相似文献   
2.
S Soulier  P Gaye 《Biochimie》1981,63(7):619-628
The results of subcellular fractionation of sheep mammary gland membranes indicate that N-acetylgalactosaminyl polypeptide transferase and galactosyl-N-acetylgalactosaminyl transferase, which are involved in the assembly of disaccharide units of kappa-casein, are localized chiefly in Golgi membranes. The glycosyltransferase activities incorporating N-acetyl [1-14C] galactosamine and [U-14C] galactose from uridine diphosphate N-acetyl [1-14C] galactosamine and uridine diphosphate [U-14C] galactose, respectively, were measured after membrane solubilization with Triton X-100 either with unglycosylated caseinomacropeptide, or with this polypeptide containing the N-acetylgalactosamine side chain residues (desialylated and degalactosylated caseinomacropeptide). Radioactive N-acetylgalactosamine was incorporated in the unglycosylated acceptor peptide, and the glycosidic bonds in the product were alkali labile, suggesting that they were linked to the hydroxyamino acid residues. In addition radioactive N-acetylgalactosamine was released after alpha N-acetyl-D-galactosaminidase treatment of labelled caseinomacropeptide. [U-14C] galactose was incorporated in the desialylated and degalactosylated acceptor peptide. Reductive alkaline treatment of [U-14C] galactose peptide resulted in the release of a major product, the chromatographic properties of which in TLC were identical with authentic galactosyl (1 leads to 3) N-acetylgalactosaminitol. The structure of the labelled disacchariditol determined after periodate oxidation (two equivalents) by gas liquid chromatography-mass spectrometry revealed that the [U-14C] galactose was linked to position C-3 on the N-acetylgalactosaminyl-residue. The anomery of the galactose, as determined by a chemical method, indicates unambiguously a beta configuration.  相似文献   
3.
Summary [3H] thymidine incorporation into DNA of the parotid (PA) gland of adult and 20-day-old rats and into DNA of the pancreas (PANC) of 20-day-old rats was increased markedly following a 2-day regimen of isoproterenol (ISO) administration. However, when the submandibular-sublingual (SM-SL) glands had been removed just prior to initiation of the ISO injections, the [3H] thymidine incorporation into PA and PANC was inhibited, and cpm/mg protein of these organs was even lower than that of organs of untreated rats with SM-SL glands present. Removal of the PA glands just prior to initiation of the ISO regimen had no effect on the ISO-induced [3H] thymidine incorporation into DNA of PANC but partially inhibited that of the submandibular (SM) gland. It is suggested that the inhibitory effects on DNA and RNA synthesis that follow removal of SM-SL glands are attributable to the growth factors (epidermal growth factor and nerve growth factor) found in the rat SM gland. These factors appear to regulate normal DNA synthetic activity of exocrine glands as well as 1-adrenoceptor mediated DNA synthesis. Cellular hypertrophy induced by the ISO was less markedly affected by absence of the SM glands, but a partial inhibition of [3H] uridine incorporation into RNA of PA of adult rats also occurred when SM-SL glands were removed prior to initiation of the ISO-regimen.  相似文献   
4.
1.  Rats which survived hypoglycemia by insulin, hypoxia by 10% O2, or ischemia by carotid ligation and hypotension to 40 mm Hg, evidenced no changes in cerebrospinal fluid (CSF) uridine. Animals which died soon after the above interventions or as a result of KCl-induced cardiac arrest had elevated CSF uridine concentrations.
2.  Injection of whole blood or the soluble contents of lysed blood cells into the lateral ventricle of rats reduced CSF uridine to less than one-half normal at 24 hrs but values returned to normal 3 days later. Changes in hypoxanthine resembled those of uridine, but were less dramatic, whereas xanthine concentrations were largely unaltered. Intraventricular injection of plasma or saline did not alter CSF uridine.
3.  It seems most likely that low CSF uridine concentrations previously reported in head injury patients may be secondary to the effects of blood cell contents in the cerebrospinal fluid, rather than responses to altered metabolism in neurons or glia cells.
  相似文献   
5.
It was shown that tRNA fromAzotobacter vinelandii grown in the presence of ammonium chloride lacks ribothymidine while that grown in the absence of the ammonium salt contains this modified nucleoside. [32P]-Labelled tRNA from this organism grown in a medium containing the ammonium salt was digested with RNase T1 and the pseudouridinecontaining tetranucleotide, common to all tRNAs was isolated and analysed for the nucleoside replacing the ribothymidine. It was found to be uridine. Cells previously labelled with [32P]-phosphate in the ammonium salt medium were washed and incubated in the ammonium saltfree medium to test whether ribothymidine would be formed upon removal of the ammonium ions. Methylation of the uridine did not take place.  相似文献   
6.
Summary After the stimulation of quiescent density-inhibited BALB/c-3T3 cells with fresh bovine calf serum, uridine kinase activity measured in cellular extracts increased between hours 3 and 6 of incubation and remained elevated through 12 h after stimulation. The addition of either partially purified platelet-derived growth factor (PDGF) or platelet-poor plasma (PPP) also caused increased uridine kinase activity by 6 h, but the increased activity was not maintained and the activity returned to the prestimulated level by 12 h. However, when PDGF and PPP were added in combination an increased level of uridine kinase activity was maintained in a manner similar to that seen after the addition of serum. The components of PPP eluted in the void volume from Sephadex G-50 chromatography did not induce uridine kinase activity when present alone, although they did act synergistically with PDGF to allow the maintenance of elevated levels of uridine kinase activity over the period from 6 to 12 h after stimulation. Thymidine kinase activity was not induced by the addition of either PDGF or PPP alone, although either serum or the combination of PDGF and PPP did produce an induction of thymidine kinase activity in late G1. This work was supported by NCI Grants CA24913 and CA16084. W. W. was supported by NIH Postdoctoral Fellowship AM 1477. W. J. P. was supported by JFRA32 from the American Cancer Society. A preliminary report of this research was given at the Eighth International Cell Cycle Conference held at Research Triangle Park, NC, May 15–16, 1980.  相似文献   
7.
Summary The characteristics of uridine transport were studied in basolateral plasma membrane vesicles isolated from rat liver. Uridine was not metabolized under transport measurement conditions and was taken up into an osmotically active space with no significant binding of uridine to the membrane vesicles. Uridine uptake was sodium dependent, showing no significant stimulation by other monovalent cations. Kinetic analysis of the sodium-dependent component showed a single system with Michaelis-Menten kinetics. Parameter values were K M 8.9 m and V max 0.57 pmol/mg prot/sec. Uridine transport proved to be electrogenic, since, firstly, the Hill plot of the kinetic data suggested a 1 uridine: 1 Na+ stoichiometry, secondly, valinomycin enhanced basal uridine uptake rates and, thirdly, the permeant nature of the Na+ counterions determined uridine transport rates (SCN > NO 3 > Cl > SO 4 2– ). Other purines and pyrimidines cis-inhibited and trans-stimulated uridine uptake.This work has been partially supported by grant PM90-0162 from D.G.I.C.Y.T. (Ministerio de Educación y Ciencia, Spain). B.R.-M. is a research fellow supported by the Nestlé Nutrition Research Grant Programme.  相似文献   
8.
The primary nucleotide sequence was reported earlier for U1 RNA (Reddy et al, (1974) J. Biol. Chem. 249, 6486–6494), an snRNA implicated in splicing of HnRNAs. In view of the presence of homologous pseudouridine (ψ) residues in 5′-ends of several highly conserved U-snRNAs and the recent report of modified bases in the U1 RNA structure (Branlant et al, (1980) Nucleic Acids Res. 8, 4143–4154) a study was made for the presence of ψ and other modified nucleotides in the 5′-end of the U1 RNA. Identification of ψ residues at positions 6 and 7, shows the 5′-sequence of U1 RNA is: m32, 2,7 GpppAm-Um-A-C-ψ-ψ-A-C-C-U-G-G-C-A-G-G-G-G-A-G-A-U-A-C. The ψ residues in place of U at positions 6 and 7 may affect the binding of U1 RNA at intron-exon splice junctions.  相似文献   
9.
Summary The regulation of the synthesis of nucleoside metabolizing enzymes has been studied in cya and crp mutant strains of Escherichia coli.The synthesis of the cyt-enzymes, cytidine deaminase and uridine phosphorylase regulated by the cytR gene product, is activated by the cAMP-CRP complex. On the other hand the synthesis of the deoenzymes: deoxyriboaldolase, thymidine phosphorylase, phosphodeoxyribomutase and purine nucleoside phosphorylase, appears to be increased if an active cAMP-CRP complex cannot be formed.It also seems that nucleosides serve as poor carbon sources for cya and crp mutants; this could not solely be explained by low levels of nucleoside metabolizing enzymes nor by a deficiency in nucleoside uptake. Addition of casamino acids stimulated the growth of cya and crp mutants, with nucleosides as carbon sources. When grown on glucose and casamino acids growth could be stimulated by adenine and hypoxanthine nucleosides; these results suggest an impaired nitrogen metabolism in cya and crp mutants.Abbreviations and Symbols cAMP cyclic adenosine 3:5-monophosphate - CRP cAMP receptor protein. Genes coding for: adenyl cyclase - cya cAMP receptor protein - crp cytidine deaminase - cdd uridine phosphorylase - udp thymidine phosphorylase - tpp purine nucleoside phosphorylase - pup; cytR regulatory gene for cdd, udp, dra, tpp, drm, and pup - deoR regulatory gene for dra, tpp, drm, and pup  相似文献   
10.
The activities of ribonucleases (RNase HS and RNase A), which hydrolyze ribonucleic acid at linkages attached to pyrimidine nucleotides were stimulated by polyamines, while the activities of ribonucleases (RNase T1 and RNase M), which attack ribonucleic acid at linkages attached to purine nucleotides were not influenced by polyamines. In the presence of polyamines, the cleavage of C5′-O-P linkages adjacent to cytosine nucleotide was stimulated, while the cleavage of C5′-O-P linkages adjacent to uracil nucleotides was inhibited slightly. The effect of polyamines on the activities of ribonucleases occured through the binding of the polyamines to nucleic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号