首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2005年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Plant-soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity-productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.e. overyield), and plants with positive PSFs grow less in communities than in monoculture (i.e. underyield). This effect is predicted to increase with diversity and saturate at low species richness because the proportion of 'self-cultivated' soils rapidly decreases as species are added to a community. Results in a set of glasshouse experiments supported model predictions. We found that PSFs measured in one experiment were negatively correlated with overyielding in three-species plant communities measured in a separate experiment. Furthermore, when parametrized with our experimental PSF data, our model successfully predicted species-level overyielding and underyielding. The model was less effective at predicting community-level overyielding and underyielding, although this appeared to reflect large differences between communities with or without nitrogen-fixing plants. Results provide conceptual and experimental support for the role of PSFs in diversity-productivity relationships.  相似文献   
2.
Diversity decreases invasion via both sampling and complementarity effects   总被引:10,自引:1,他引:9  
Complementarity and sampling effects may both contribute to increased invasion resistance at higher diversity. We measured plant invader biomass across a long-term experimental plant diversity gradient. Invader species' biomass was inhibited in more diverse plots, largely because of the presence of strongly competitive C4 bunchgrasses, consistent with a sampling effect. Invader biomass was negatively correlated with resident root biomass, and positively correlated with soil nitrate concentrations, suggesting that competition for nitrogen limited invader success. Resident root biomass increased and soil nitrate concentrations decreased with the presence of C4 grasses and also across the diversity gradient, suggesting that diverse plots are more competitive because of the presence of C4 grasses. In addition to this evidence for a sampling effect, we also found evidence for a complementarity effect. Specifically, the percentage of plots that had lower invader biomass than did the best resident monoculture (i.e. that had invader 'underyielding') increased across the species richness gradient. This pattern cannot be explained by a sampling effect and is a unique signature of complementarity effects. Our results demonstrate the importance of multiple mechanisms by which diversity can increase invasion resistance.  相似文献   
3.
While previous studies focused on tree growth in pure stands, we reveal that tree resistance and resilience to drought stress can be modified distinctly through species mixing. Our study is based on tree ring measurement on cores from increment boring of 559 trees of Norway spruce (Picea abies [L.] Karst.), European beech (Fagus sylvatica [L.]) and sessile oak (Quercus petraea (Matt.) Liebl.) in South Germany, with half sampled in pure, respectively, mixed stands. Indices for resistance, recovery and resilience were applied for quantifying the tree growth reaction on the episodic drought stress in 1976 and 2003. The following general reaction patterns were found. (i) In pure stands, spruce has the lowest resistance, but the quickest recovery; oak and beech were more resistant, but recover was much slower and they are less resilient. (ii) In mixture, spruce and oak perform as in pure stands, but beech was significantly more resistant and resilient than in monoculture. (iii) Especially when mixed with oak, beech is facilitated. We hypothesise that the revealed water stress release of beech emerges in mixture because of the asynchronous stress reaction pattern of beech and oak and a facilitation of beech by hydraulic lift of water by oak. This facilitation of beech in mixture with oak means a contribution to the frequently reported overyield of beech in mixed versus pure stands. We discuss the far‐reaching implications that these differences in stress response under intra‐ and inter‐specific environments have for forest ecosystem dynamics and management under climate change.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号