首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   930篇
  免费   112篇
  国内免费   37篇
  1079篇
  2024年   6篇
  2023年   20篇
  2022年   12篇
  2021年   36篇
  2020年   40篇
  2019年   43篇
  2018年   31篇
  2017年   31篇
  2016年   39篇
  2015年   41篇
  2014年   57篇
  2013年   67篇
  2012年   30篇
  2011年   65篇
  2010年   44篇
  2009年   50篇
  2008年   56篇
  2007年   55篇
  2006年   50篇
  2005年   34篇
  2004年   35篇
  2003年   33篇
  2002年   20篇
  2001年   20篇
  2000年   21篇
  1999年   21篇
  1998年   9篇
  1997年   5篇
  1996年   17篇
  1995年   4篇
  1994年   9篇
  1993年   8篇
  1992年   14篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   4篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   5篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1079条查询结果,搜索用时 0 毫秒
1.
The effects of the 2003 European heat wave on a freshwater plankton assemblage and its fatty acid (FA) composition were investigated. Composition and FA profiles of four size categories of planktonic organisms collected in 2003 were compared to those of the colder year 2002.  相似文献   
2.
A generalized Morse index theory is used to study travelling waves in a natural selection-migration model for a diploid organism when the selective strength is weak.  相似文献   
3.
4.
The FitzHugh-Nagumo equations for action potential propagation along nerve axons and the corresponding ordinary differential equations for travelling waves are solved numerically. Above a critical value, a constant bias current can drive a wave-front solution. At the critical value, a global bifurcation occurs. As a result, the wave front switches into a pulse.Based on a thesis by one of the authors (H. F.).  相似文献   
5.
Stahlberg R  Cosgrove DJ 《Planta》1996,200(4):416-425
Slow wave potentials (SWPs) are transient depolarizations which propagate substantial distances from their point of origin. They were induced in the epidermal cells of pea epicotyls by injurious methods such as root excision and heat treatment, as well as by externally applied defined steps in xylem pressure (Px) in the absence of wounding. The common principle of induction was a rapid increase in Px. Such a stimulus appeared under natural conditions after (i) bending of the epicotyl, (ii) wounding of the epidermis, (iii) rewatering of dehydrated roots, and (iv) embolism. The induced depolarization was not associated with a change in cell input resistance. This result and the ineffectiveness of ion channel blockers point to H(+)-pumps rather than ion channels as the ionic basis of the SWP. Stimuli such as excision, heat treatment and pressure steps, which generate SWPs, caused a transient increase in the fluorescence intensity of epicotyls loaded with the pH-indicator DM-NERF, a 2',7'-dimethyl derivative of rhodol, but not of those loaded with the pH indicator 2',7'bis(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF). Matching kinetics of depolarization and pH response identify a transient inactivation of proton pumps in the plasma membrane as the causal mechanism of the SWP. Feeding pump inhibitors to the cut surface of excised epicotyls failed to chemically simulate a SWP; cyanide, azide and 2,4-dinitrophenol caused sustained, local depolarizations which did not propagate. Of all tested substances, only sodium cholate caused a transient and propagating depolarization whose arrival in the growing region of the epicotyl coincided with a transient growth rate reduction.  相似文献   
6.
A fractal model for the characterization of mycelial morphology   总被引:1,自引:0,他引:1  
A new technique based on a fractal model has been developed for the quantification of the macroscopic morophology of mycelia. The morphological structuring is treated as a fractal object, and the fractal dimension, determined by an ultrasonic scattering procedure developed for the purpose, serves as a quantitative morphological index. Experimental observations reported earlier and simulations of mycelial growth, carried out using a probabilistic-geometric growth model developed for the purpose, both validate the applicability of the fractal model. In experiments with three different species, the fractal dimensions of pelletous structures were found to be in the range 1.45-2.0 and those of filamentous structures were in the range 1.9-2.7, with values around 2.0 representing mixed morphologies. Fractal dimensions calculated from simulated mycelia are in rough agreement with these ranges. The fractal dimension is also found to be relatively insensitive to the biomass concentration, as seen by dilution of the original broths. The relation between morphology and filtration properties of the broths has also been studied. The fractal dimension shows a strong correlation with the index of cake compressibility and with the Kozeny constant, two filtration parameters that are known to be morphology dependent. This technique could thus be used to develop correlations between the morphology, represented by the fractal dimension, and important morphology-dependent process variables. (c) 1993 John Wiley & Sons, Inc.  相似文献   
7.
Summary Intracellular calcium [Ca2+] i measurements in cell suspension of gastrointestinal myocytes have suggested a single [Ca2+] i transient followed by a steady-state increase as the characteristic [Ca2+] i response of these cells. In the present study, we used digital video imaging techniques in freshly dispersed myocytes from the rabbit colon, to characterize the spatiotemporal pattern of the [Ca2+] i signal in single cells. The distribution of [Ca2+] i in resting and stimulated cells was nonhomogeneous, with gradients of high [Ca2+] i present in the subplasmalemmal space and in one cell pole. [Ca2+] i gradients within these regions were not constant but showed temporal changes in the form of [Ca2+] i oscillations and spatial changes in the form of [Ca2+] i waves. [Ca2+] i oscillations in unstimulated cells (n = 60) were independent of extracellular [Ca2+] and had a mean frequency of 12.6 +1.1 oscillations per min. The baseline [Ca2+], was 171 ± 13 nm and the mean oscillation amplitude was 194 ± 12 nm. Generation of [Ca2+] i waves was also independent of influx of extracellular Ca2+. [Ca2+] i waves originated in one cell pole and were visualized as propagation mostly along the subplasmalemmal space or occasionally throughout the cytoplasm. The mean velocity was 23 +3 m per sec (n = 6). Increases of [Ca2+] i induced by different agonists were encoded into changes of baseline [Ca2+] i and the amplitude of oscillations, but not into their frequency. The observed spatiotemporal pattern of [Ca2+] i regulation may be the underlying mechanism for slow wave generation and propagation in this tissue. These findings are consistent with a [Ca2+] i regulation whereby cell regulators modulate the spatiotemporal pattern of intracellularly generated [Ca2+] i oscillations.The authors thank Debbie Anderson for excellent technical assistance with the electron microscopy and Dr. M. Regoli for providing the NK-1 agonist [Sar9,Met(O2)11]-SP. This work was supported by National Institutes of Health Grants DK 40919 and DK 40675 and Veterans Administration Grant SMI.  相似文献   
8.
Based on statistical variance as an index of electroencephalogram (EEG) parameters, we monitored slow-wave sleep in both humans and rats in real time and on-line with a widely used personal computer. This EEG variance method may be a useful tool to carry out biological rhythm research, including sleep studies.  相似文献   
9.
A system is described consisting of a mode-locked Ar ion laser and time-resolved photon-counting electronics. The system is capable of measuring fluorescence lifetimes in the subnanosecond time domain. The Ar ion laser is suitable for the excitation of flavins, since the available laser wavelengths encompass the first absorption band of the yellow chromophore. Due to the high radiation density and the short pulse, both the time and wavelength resolution of the fluorescence of very weakly emitting compounds can be measured. Experiments have been described for flavin models exhibiting single and multiple modes of decay. In these examples lifetimes were determined both from deconvolved decay curves and from direct analysis of the tail of the curve, where no interference of the exciting pulse is encountered. Both determinations showed very good agreement. Due to the highly polarized laser light the decay of the emission anisotropy could be measured directly after the exciting pulse. In principle, fast rotational motions might be detected. An anisotropy measurement conducted with a flavoprotein with a noncovalently attached FAD is presented.  相似文献   
10.
Understanding and predicting patterns of spatial organization across ecological communities is central to the field of landscape ecology, and a similar line of inquiry has begun to evolve sub‐tidally among seascape ecologists. Much of our current understanding of the processes driving marine community patterns, particularly in the tropics, has come from small‐scale, spatially‐discrete data that are often not representative of the broader seascape. Here we expand the spatial extent of seascape ecology studies and combine spatially‐expansive in situ digital imagery, oceanographic measurements, spatial statistics, and predictive modeling to test whether predictable patterns emerge between coral reef benthic competitors across scales in response to intra‐island gradients in physical drivers. We do this around the entire circumference of a remote, uninhabited island in the central Pacific (Jarvis Island) that lacks the confounding effects of direct human impacts. We show, for the first time, that competing benthic groups demonstrate predictable scaling patterns of organization, with positive autocorrelation in the cover of each group at scales < ~1 km. Moreover, we show how gradients in subsurface temperature and surface wave power drive spatially‐abrupt transition points in group dominance, explaining 48–84% of the overall variation in benthic cover around the island. Along the western coast, we documented ten times more sub‐surface cooling‐hours than any other part of the coastline, with events typically resulting in a drop of 1–4°C over a period of < 5 h. These high frequency temperature fluctuations are indicative of upwelling induced by internal waves and here result in localized nitrogen enrichment (NO2 + NO3) that promotes hard coral dominance around 44% of the island's perimeter. Our findings show that, in the absence of confounding direct human impacts, the spatial organization of coral reef benthic competitors are predictable and somewhat bounded across the seascape by concurrent gradients in physical drivers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号