首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   9篇
  国内免费   1篇
  2017年   1篇
  2016年   1篇
  2013年   4篇
  2009年   1篇
  2007年   3篇
  2006年   3篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   2篇
  1990年   1篇
  1980年   1篇
  1972年   1篇
排序方式: 共有46条查询结果,搜索用时 460 毫秒
1.
Hemoglobin Dallas, an α-chain variant with a substitution of lysine for asparagine at position 97(G4), was found to have increased oxygen affinity (p12 = 1 mmHg at pH 7.3 and 20°C), diminished cooperativity (0n, the Hill coefficient = 1.7) and reduced Bohr effect (about 50%). Addition of allosteric effectors (such as 2,3-diphosphoglycerate, inositol hexakisphosphate and bezafibrate) led to a decrease in oxygen affinity and increase in cooperative energy. Kinetic studies at pH 7.0 and 20°C revealed that (i), the overall rate of oxygen dissociation is 1.4-fold slower than that for HbA and (ii), the carbon monoxide dissociation rate is unaffected. The abnormal properties of this hemoglobin variant can be atttributed to a more ‘relaxed’ T-state.  相似文献   
2.
The theory of interaction parameters has thus far been based on the free-energy relationships in the formation of ternary complexes formed between a pair of ligands and a protein molecule. The concept has been formulted in terms of a thermodynamic square comprised of the free protein, the two binary complexes, and the ternary complex. However, an increasing number of proteins have been found to exist as equilibrium mixtures of two macrostates. The equilibrium constants for such two-state transitions vary quite considerably between the various binary and ternary complexes of a given protein. We show here that the interpretations of interaction parameters in such two-state systems, requiring the use of a thermodynamic cube, are much more complex than those based on the classic thermodynamic square commonly employed. We demonstrate the use of enthalpies of interaction and heat capacities of interaction to analyze the source of observed free enerigies of interaction in such systems. Specifically, we find that measured negative interaction parameters may arise simply from the inability of a system to achieve all of the positive component effects anticipated by the conventional formulation.  相似文献   
3.
We present a solvable model that predicts the folding kinetics of two-state proteins from their native structures. The model is based on conditional chain entropies. It assumes that folding processes are dominated by small-loop closure events that can be inferred from native structures. For CI2, the src SH3 domain, TNfn3, and protein L, the model reproduces two-state kinetics, and it predicts well the average Phi-values for secondary structures. The barrier to folding is the formation of predominantly local structures such as helices and hairpins, which are needed to bring nonlocal pairs of amino acids into contact.  相似文献   
4.
We address the importance of natural selection in the origin and maintenance of rapid protein folding by experimentally characterizing the folding kinetics of two de novo designed proteins, NC3-NCAP and ENH-FSM1. These 51 residue proteins, which adopt the helix-turn-helix homeodomain fold, share as few as 12 residues in common with their most closely related natural analog. Despite the replacement of up to 3/4 of their residues by a computer algorithm optimizing only thermodynamic properties, the designed proteins fold as fast or faster than the 35,000 s(-1) observed for the closest natural analog. Thus these de novo designed proteins, which were produced in the complete absence of selective pressures or design constraints explicitly aimed at ensuring rapid folding, are among the most rapidly folding proteins reported to date.  相似文献   
5.
A detailed analysis of peptide backbone amide (HN) and Hα chemical shifts reveals a consistent pattern for β hairpins and three-stranded β sheets. The Hα’s at non-hydrogen-bonded strand positions are inwardly directed and shifted downfield ~1 ppm due largely to an anisotropy contribution from the cross-strand amide function. The secondary structure associated Hα shift deviations for the H-bonded strand positions are also positive but much smaller (0.1–0.3 ppm) and the turn residues display negative Hα chemical shift deviations (CSDs). The pattern of (HN) shift deviations is an even better indicator of both hairpin formation and register, with the cross-strand H-bonded sites shifted downfield (also by ~1 ppm) and with diagnostic values for the first turn residue and the first strand position following the turn. These empirical observations, initially made for [2:2]/[2:4]-type-I' and -II' hairpins, are rationalized and can be extended to the analysis of other turns, hairpin classes ([3:5], [4:4]/[4:6]), and three-stranded peptide β-sheet models. The Hα’s at non-hydrogen-bonded sites and (HN)’s in the intervening H-bonded sites provide the largest and most dependable measures of hairpin structuring and can be used for melting studies; however the intrinsic temperature dependence of (HN) shifts deviations needs to reflect the extent of solvent sequestration in the folded state. Several observations made in the course of this study provide insights into β-sheet folding mechanisms: (1) The magnitude of the (HN) shifts suggests that the cross-strand H-bonds in peptide hairpins are as short as those in protein β sheets. (2) Even L-Pro-Gly turns, which are frequently used in unfolded controls for hairpin peptides, can support hairpin populations in aqueous fluoroalcohol media. (3) The good correlation between hairpin population estimates from cross-strand H-bonded (HN) shift deviations, Hα shift deviations, and structuring shifts at the turn locus implies that hairpin folding transitions approximate two-state behavior. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
6.
Most proteins exist in the cell as multi-component assemblies. However, which proteins need to be present simultaneously in order to perform a given function is frequently unknown. The first step toward this goal would be to predict proteins that can function only when in a complexed form. Here, we propose a scheme to distinguish whether the protein components are ordered (stable) or disordered when separated from their complexed partners. We analyze structural characteristics of several types of complexes, such as natively unstructured proteins, ribosomal proteins, two-state and three-state complexes, and crystal-packing dimers. Our analysis makes use of the fact that natively unstructured proteins, which undergo a disorder-to-order transition upon binding their partner, and stable monomeric proteins, which exist as dimers only in their crystal form, provide examples of two vastly different scenarios. We find that ordered monomers can be distinguished from disordered monomers on the basis of the per-residue surface and interface areas, which are significantly smaller for ordered proteins. With this scale, two-state dimers (where the monomers unfold upon dimer separation) and ribosomal proteins are shown to resemble disordered proteins. On the other hand, crystal-packing dimers, whose monomers are stable in solution, fall into the ordered protein category. While there should be a continuum in the distributions, nevertheless, the per-residue scale measures the confidence in the determination of whether a protein can exist as a stable monomer. Further analysis, focusing on the chemical and contact preferences at the interface, interior and exposed surface areas, reveals that disordered proteins lack a strong hydrophobic core and are composed of highly polar surface area. We discuss the implication of our results for de novo design of stable monomeric proteins and peptides.  相似文献   
7.
8.
In previous work, a strongly stabilized variant of the β1 domain of streptococcal protein G (Gβ1) was obtained by an in vitro selection method. This variant, termed Gβ1-M2, contains the four substitutions E15V, T16L, T18I, and N37L. Here we elucidated the molecular basis of the observed strong stabilizations. The contributions of these four residues were analyzed individually and in various combinations, additional selections with focused Gβ1 gene libraries were performed, and the crystal structure of Gβ1-M2 was determined. All single substitutions (E15V, T16L, T18I, and N37L) stabilize wild-type Gβ1 by contributions of between 1.6 and 6.0 kJ mol− 1 (at 70 °C). Hydrophobic residues at positions 16 and 37 provide the major contribution to stabilization by enlarging the hydrophobic core of Gβ1. They also increase the tendency to form dimers, as shown by dependence on the concentration of apparent molecular mass in analytical ultracentrifugation, by concentration-dependent stability, and by a strongly increased van't Hoff enthalpy of unfolding. The 0.88-Å crystal structure of Gβ1-M2 and NMR measurements in solution provide the explanation for the observed dimer formation. It involves a head-to-head arrangement of two Gβ1-M2 molecules via six intermolecular hydrogen bonds between the two β strands 2 and 2′ and an adjacent self-complementary hydrophobic surface area, which is created by the T16L and N37L substitutions and a large 120° rotation of the Tyr33 side chain. This removal of hydrophilic groups and the malleability of the created hydrophobic surface provide the basis for the dimer formation of stabilized Gβ1 variants.  相似文献   
9.
Thermal and GdmCl-induced unfolding transitions of aldolase from Staphylococcus aureus are reversible under a variety of solvent conditions. Analysis of the transitions reveals that no partially folded intermediates can be detected under equilibrium conditions. The stability of the enzyme is very low with a delta G0 value of -9 +/- 2 kJ/mol at 20 degrees C. The kinetics of unfolding and refolding of aldolase are complex and comprise at least one fast and two slow reactions. This complexity arises from prolyl isomerization reactions in the unfolded chain, which are kinetically coupled to the actual folding reaction. Comparison with model calculations shows that at least two prolyl peptide bonds give rise to the observed slow folding reactions of aldolase and that all of the involved bonds are presumably in the trans conformation in the native state. The rate constant of the actual folding reaction is fast with a relaxation time of about 15 s at the midpoint of the folding transition at 15 degrees C. The data presented on the folding and stability of aldolase are comparable to the properties of much smaller proteins. This might be connected with the simple and highly repetitive tertiary structure pattern of the enzyme, which belongs to the group of alpha/beta barrel proteins.  相似文献   
10.
When a protein folds or unfolds, it passes through many half-folded microstates. Only a few of them can accumulate and be seen experimentally, and this happens only when the folding (or unfolding) occurs far from the point of thermodynamic equilibrium between the native and denatured states. The universal features of folding, though, are observed in the vicinity of the equilibrium point. Here the two-state transition proceeds without any accumulation of metastable intermediates, and only the transition state (folding nucleus) is outlined by its key influence on the folding/unfolding kinetics. This review covers recent experimental and theoretical studies of folding nuclei.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号