首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   265篇
  免费   51篇
  国内免费   20篇
  2023年   7篇
  2022年   3篇
  2021年   3篇
  2020年   13篇
  2019年   10篇
  2018年   15篇
  2017年   15篇
  2016年   13篇
  2015年   17篇
  2014年   20篇
  2013年   16篇
  2012年   10篇
  2011年   11篇
  2010年   13篇
  2009年   16篇
  2008年   18篇
  2007年   12篇
  2006年   14篇
  2005年   12篇
  2004年   12篇
  2003年   11篇
  2002年   8篇
  2001年   6篇
  2000年   12篇
  1999年   7篇
  1998年   11篇
  1997年   2篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1980年   1篇
排序方式: 共有336条查询结果,搜索用时 31 毫秒
1.
Sardinero  Santiago 《Plant Ecology》2000,148(1):81-103
An analysis of vegetation along an altitudinal gradient on the Presidential Range, New Hampshire, USA, using the Braun–Blanquet approach followed by multivariate data analysis is presented. Twelve main plant communities have been distinguished. Floristic information is presented in twelve tables and one appendix. The relationships of the communities to complex environmental gradients are analyzed using Correspondence Analysis. Floristic composition and community structure are controlled primarily by the altitudinal gradient (temperature, precipitation), and by mesotopographic conditions (snow accumulation, exposure and cryoturbation, slope position, and soil moisture).  相似文献   
2.
3.
Summary In the foothills of the Philip Smith Mountains, Brooks Range, Alaska, tussock tundra occurs on rolling hills and in valleys that were shaped by Pleistocene glaciations. During the 1986 and 1987 summer seasons, Sphagnum growth and production were determined in water tracks on tundra slopes that acted to channel water flow to the valley bottom stream and in intertrack tundra areas that were relatively homogeneous with respect to downslope drainage. Measurements were made under ambient environmental conditions and on mosses receiving supplemental irrigation in each area. Growth rate for Sphagnum spp. (cm shoot length increase/day) was low and relatively constant in intertrack tundra and highest but quite variable in water tracks. A strong negative correlation was found between Sphagnum spp. growth rate and solar irradiance in the shady environment below Salix canopies in the water tracks. Estimates of net annual dry weight (DW) production for Sphagnum spp. ranged from 0.10 g DW dm-2 yr-1 in intertrack tundra vegetation to 1.64 g DW dm-2 yr-1 in well-shaded water tracks. Experimental water additions had little effect on growth and production in intertrack tundra and well-developed water tracks, but significantly increased growth in a weakly-developed water track community. Low production over large areas of tundra slopes may occur due to presence of slow growing species resistant to dessication in intertrack tundra as opposed to rapidly growing less compact species within the limited extent of water tracks. We hypothesize that species capable of rapid growth occur also in weakly-developed water tracks, and that these are water-limited more often than plants occurring in well-developed water track situations. Where experienced, high light intensity may additionally limit growth due to photoinhibition.  相似文献   
4.
Thermokarst ponds are the most abundant type of water body in the arctic tundra, with millions occurring in the coastal plains of Alaska, Northwest Territories and Siberia. Because ice covers of at least 2 m in thickness are formed at these latitudes, tundra ponds freeze solid every winter As a result, the growing season is shortened to a range of 60 to 100 days, during which time the photoperiod is altered to a prolonged light phase. Tundra ponds are generally close to neutral in pH and low in ions, contain dissolved gases near saturation and are nutrient poor. In low arctic ponds there are two phytoplankton biomass and primary production peaks, whereas they may be only one in the high arctic. Nanoplanktonic flagellates of the Chrysophyceae and Cryptophyceae dominate the maxima. The mid-summer decline in phytoplankton in the low arctic can be attributed to a combination of phosphorus limitation and heavy grazing pressure. The cryptomonad Rhodomonas minuta Skuja is one of the most widespread phytoplankters in tundra ponds. Because of the altered photoperiods, many species do not form resting spores prior to ice formation but survive freezing in the vegetative state.  相似文献   
5.
Summary CO2 efflux from tussock tundra in Alaska that had been exposed to elevated CO2 for 2.5 growing seasons was measured to assess the effect of long- and short-term CO2 enrichment on soil respiration. Long-term treatments were: 348, 514, and 683 μll−1 CO2 and 680 μll−1 CO2+4°C above ambient. Measurements were made at 5 CO2 concentrations between 87 and 680 μll−1 CO2. Neither long- or short-term CO2 enrichment significantly affected soil CO2 efflux. Tundra developed at elevated temperature and 680 μll−1 CO2 had slightly higher, but not statistically different, mean respiration rates compared to untreated tundra and to tundra under CO2 control alone.  相似文献   
6.
We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m–2 y–1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.  相似文献   
7.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   
8.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
9.
Machine grading is frequently required to prepare the terrain when building high-altitude ski slopes in the Alps. However, this kind of disturbance alters the natural environment, destroying the vegetation and hampering its reestablishment. Thus, specific restoration plans are necessary to encourage the recovery of vegetation, which is already affected by different natural constraints in this harsh environment. One of the main critical factors affecting plant growth in high-altitude areas is the lack of available nitrogen (N) in the soil. In this context, the addition of a slow-release N fertilizer was carried out in an experimental revegetated ski slope between 2,800 and 2,900 m above sea level in the western Italian Alps. Both vegetation and soil were monitored during a 5-year period in order to test the effectiveness of N addition on the restoration process. Even if effects on soil carbon and N contents were negligible, vegetation was remarkably affected by the fertilization, since the total vegetation cover and the species richness significantly increased. Against the expectations, there was a remarkable increase in spontaneous forbs, rather than in most of the sown graminoids, which slightly varied during the experimental period. Actually, graminoids responded in different ways, mostly increasing (likewise forbs), but the slight decrease of the dominant Festuca nigrescens (Chewing's Fescue) masked their spread. This study confirms the noteworthy role of N in high-altitude alpine soils and consequently its importance to improve the restoration process of degraded ecosystems.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号