首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
Western boundary currents (WBCs) redistribute heat and oligotrophic seawater from the tropics to temperate latitudes, with several displaying substantial climate change‐driven intensification over the last century. Strengthening WBCs have been implicated in the poleward range expansion of marine macroflora and fauna, however, the impacts on the structure and function of temperate microbial communities are largely unknown. Here we show that the major subtropical WBC of the South Pacific Ocean, the East Australian Current (EAC), transports microbial assemblages that maintain tropical and oligotrophic (k‐strategist) signatures, to seasonally displace more copiotrophic (r‐strategist) temperate microbial populations within temperate latitudes of the Tasman Sea. We identified specific characteristics of EAC microbial assemblages compared with non‐EAC assemblages, including strain transitions within the SAR11 clade, enrichment of Prochlorococcus, predicted smaller genome sizes and shifts in the importance of several functional genes, including those associated with cyanobacterial photosynthesis, secondary metabolism and fatty acid and lipid transport. At a temperate time‐series site in the Tasman Sea, we observed significant reductions in standing stocks of total carbon and chlorophyll a, and a shift towards smaller phytoplankton and carnivorous copepods, associated with the seasonal impact of the EAC microbial assemblage. In light of the substantial shifts in microbial assemblage structure and function associated with the EAC, we conclude that climate‐driven expansions of WBCs will expand the range of tropical oligotrophic microbes, and potentially profoundly impact the trophic status of temperate waters.  相似文献   
2.
Aim Since the opening of the Suez Canal in 1869, many tropical taxa from the Indo‐West Pacific (IWP) realm have entered the Mediterranean Sea, which is experiencing rising temperatures. My aims are: (1) to compare biogeographically this tropical transformation of the Mediterranean biota with the tropical faunas of the Mediterranean and adjacent southern European and West African seas during the Late Oligocene to Pliocene interval; (2) to infer the relative contributions of the tropical eastern Atlantic and IWP to the tropical component of the marine biota in southern Europe; and (3) to understand why West Africa is not now a major source of warm‐water species. Location Southern Europe, including the Mediterranean Sea, and the coast of tropical West Africa. Methods I surveyed the literature on fossil and living shell‐bearing molluscs to infer the sources and fates of tropical subgenus‐level taxa living in southern Europe and West Africa during the Late Oligocene to Pliocene interval. Results Ninety‐four taxa disappeared from the tropical eastern Atlantic (including the Mediterranean) but persisted elsewhere in the tropics, mainly in the IWP (81 taxa, 86%) and to a lesser extent in tropical America (36 taxa, 38%). Nine taxa inferred to have arrived in the tropical eastern Atlantic from the west after the Pliocene did not enter the Mediterranean. The modern West African fauna is today isolated from that of other parts of the marine tropics. Main conclusions Taxa now entering the Mediterranean through the Suez Canal are re‐establishing a link with the IWP that last existed 16 million years ago. This IWP element, which evolved under oligotrophic conditions and under a regime of intense anti‐predatory selection, will continue to expand in the increasingly warm and increasingly oligotrophic Mediterranean. The IWP source fauna contrasts with the tropical West African biota, which evolved under productive conditions and in a regime of less anti‐predatory specialization. Until now, the post‐Pliocene West African source area has been isolated from the Mediterranean by cold upwelling. If further warming should reduce this barrier, as occurred during the productive and warm Early Pliocene, the Mediterranean could become a meeting place for two tropical faunas of contrasting source conditions.  相似文献   
3.
One individual of Sphyraena barracuda was collected on August 5, 2023, in the northern coast of Terceira Island, Azores, Portugal, by spearfishing. In this note, we report this first record and discuss the occurrence, which represents the northernmost one in the north-east Atlantic.  相似文献   
4.
Seagrasses are valuable sources of food and habitat for marine life and are one of Earth's most efficient carbon sinks. However, they are facing a global decline due to ocean warming and eutrophication. In the last decade, with the advent of new technology and molecular advances, there has been a dramatic increase in the number of studies focusing on the effects of ocean warming on seagrasses. Here, we provide a comprehensive review of the future of seagrasses in an era of ocean warming. We have gathered information from published studies to identify potential commonalities in the effects of warming and the responses of seagrasses across four distinct levels: molecular, biochemical/physiological, morphological/population, and ecosystem/planetary. To date, we know that although warming strongly affects seagrasses at all four levels, seagrass responses diverge amongst species, populations, and over depths. Furthermore, warming alters seagrass distribution causing massive die-offs in some seagrass populations, whilst also causing tropicalization and migration of temperate species. In this review, we evaluate the combined effects of ocean warming with other environmental stressors and emphasize the need for multiple-stressor studies to provide a deeper understanding of seagrass resilience. We conclude by discussing the most significant knowledge gaps and future directions for seagrass research.  相似文献   
5.
Winter climate change is expected to lead to the tropicalization of temperate ecosystems, where tropical species expand poleward in response to a decrease in the intensity and duration of winter temperature extremes (i.e., freeze events). In the southeastern United States, freezing temperatures control the northern range limits of many invasive nonnative species. Here, we examine the influence of freezing temperatures and winter climate change on the northern range limits of an invasive nonnative tree—Schinus terebinthifolius (Brazilian pepper). Since introduction in the 1800s, Brazilian pepper has invaded ecosystems throughout south and central Florida to become the state's most widespread nonnative plant species. Although Brazilian pepper is sensitive to freezing temperatures, temperature controls on its northern distribution have not been adequately quantified. We used temperature and plant occurrence data to quantify the sensitivity of Brazilian pepper to freezing temperatures. Then, we examined the potential for range expansion under three alternative future climate scenarios (+2°C, +4°C, and +6°C). Our analyses identify a strong nonlinear sigmoidal relationship between minimum temperature and Brazilian pepper presence, with a discrete threshold temperature occurring near ?11°C. Our future scenario analyses indicate that, in response to warming winter temperatures, Brazilian pepper is expected to expand northward and transform ecosystems in north Florida and across much of the Gulf of Mexico and south Atlantic coasts of the United States. These results underscore the importance of early detection and rapid response efforts to identify and manage the northward invasion of Brazilian pepper in response to climate change. Looking more broadly, our work highlights the need to anticipate and prepare for the tropicalization of temperate ecosystems by tropical invasive species.  相似文献   
6.
7.
Alien species are considered one of the prime threats to biodiversity, driving major changes in ecosystem structure and function. Identifying the traits associated with alien introduction has been largely restricted to comparing indigenous and alien species or comparing alien species that differ in abundance or impact. However, a more complete understanding may emerge when the entire pool of potential alien species is used as a control, information that is rarely available. In the eastern Mediterranean, the marine environment is undergoing an unparalleled species composition transformation, as a flood of aliens have entered from the Red Sea following the opening of the Suez Canal in 1869. In this study, we compile data on species traits, geographical distribution, and environmental affinity of the entire pool of reef‐associated fish species in the Red Sea and more generally across the Indo‐Pacific. We use this extensive data to identify the prime characteristics separating Red Sea species that have become alien in the Mediterranean from those that have not. We find that alien species occupy a larger range of environments in their native ranges, explaining their ability to colonize the seasonal Mediterranean. Red Sea species that naturally experience high maximum temperatures in their native range have a high probability of becoming alien. Thus, contrary to predictions of an accelerating number of aliens following increased water temperatures, hotter summers in this region may prevent the establishment of many alien species. We further find that ecological trait diversity of alien species is substantially more evenly spaced and more divergent than random samples from the pool of Red Sea species, pointing at additional processes, such as competition, promoting ecological diversity among alien species. We use these results to provide a first quantitative ranking of the potential of Red Sea species to become established in the eastern Mediterranean.  相似文献   
8.
Bergmann's rule predicts that organisms at higher latitudes are larger than ones at lower latitudes. Here, we examine the body size pattern of the Atlantic marsh fiddler crab, Minuca pugnax (formerly Uca pugnax), from salt marshes on the east coast of the United States across 12 degrees of latitude. We found that M. pugnax followed Bergmann's rule and that, on average, crab carapace width increased by 0.5 mm per degree of latitude. Minuca pugnax body size also followed the temperature–size rule with body size inversely related to mean water temperature. Because an organism's size influences its impact on an ecosystem, and M. pugnax is an ecosystem engineer that affects marsh functioning, the larger crabs at higher latitudes may have greater per‐capita impacts on salt marshes than the smaller crabs at lower latitudes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号