首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  15篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Kim KH  Cho YS  Park JM  Yoon SO  Kim KW  Chung AS 《FEBS letters》2007,581(17):3303-3310
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor modulating a variety of biological functions including cancer cell proliferation and differentiation. However, the role of PPARgamma and its ligands in tumor invasion is unclear. To evaluate a possible role for PPARgamma ligands in tumor invasion, we examined whether PPARgamma agonists including pioglitazone, troglitazone, rosiglitazone, and ciglitazone could affect the activity of matrix metalloproteinases (MMPs) in the HT1080 cell line, a well-studied and well-characterized cell line for MMP research. The gelatin zymography assay showed that ciglitazone activated pro-MMP-2 significantly. In addition, ciglitazone increased the expression of MMP-2, which was accompanied by an increase of membrane type 1-MMP (MT1-MMP) expression. The PPARgamma antagonist, GW9662 attenuated the ciglitazone-induced PPARgamma activation but it did not affect the pro-MMP2 activation by ciglitazone, suggesting that the action of ciglitazone on the pro-MMP-2 activation bypassed the PPARgamma pathway. Antioxidants and various inhibitors of signal transduction were used to investigate the mechanism of ciglitazone-induced pro-MMP-2 activation. We found that the sustained production of reactive oxygen species (ROS) was required for pro-MMP-2 activation by ciglitazone. We also found that PB98059, an inhibitor of MEK-ERK, significantly blocked ciglitazone-induced pro-MMP-2 activation and that extracellular signal-regulated kinase (ERK) was hyperphosphorylated by ciglitazone. Moreover, cell invasion was significantly increased by ciglitazone in the HT1080 cell lines, whereas cell motility was not affected. This study suggests that ciglitazone-induced pro-MMP-2 activation increases PPARgamma-independent tumor cell invasion through ROS production and ERK activation in some types of cancer cells.  相似文献   
2.
Cancer cachexia is a multifaceted syndrome whose aetiology is extremely complex and is directly related to poor patient prognosis and survival. Changes in lipid metabolism in cancer cachexia result in marked reduction of total fat mass, increased lipolysis, total oxidation of fatty acids, hyperlipidaemia, hypertriglyceridaemia, and hypercholesterolaemia. These changes are believed to be induced by inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and other factors.Attention has recently been drawn to the current theory that cachexia is a chronic inflammatory state, mainly caused by the host’s reaction to the tumour. Changes in expression of numerous inflammatory mediators, notably in white adipose tissue (WAT), may trigger several changes in WAT homeostasis. The inhibition of adipocyte differentiation by PPARγ is paralleled by the appearance of smaller adipocytes, which may partially account for the inhibitory effect of PPARγ on inflammatory gene expression. Furthermore, inflammatory modulation and/or inhibition seems to be dependent on the IKK/NF-κB pathway, suggesting that a possible interaction between NF-κB and PPARγ is required to modulate WAT inflammation induced by cancer cachexia.In this article, current literature on the possible mechanisms of NF-κB and PPARγ regulation of WAT cells during cancer cachexia are discussed. This review aims to assess the role of a possible interaction between NF-κB and PPARγ in the setting of cancer cachexia as well as its significant role as a potential modulator of chronic inflammation that could be explored therapeutically.  相似文献   
3.
4.
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.  相似文献   
5.
We have previously shown that cancer cells can protect themselves from apoptosis induced by type I interferons (IFNs) through a ras→MAPK-mediated pathway. In addition, since IFN-mediated signalling components STATs are controlled by PPAR gamma we studied the pharmacological interaction between recombinant IFN-β and the PPAR-γ agonist troglitazone (TGZ). This combination induced a synergistic effect on the growth inhibition of BxPC-3, a pancreatic cancer cell line, through the counteraction of the IFN-β-induced activation of STAT-3, MAPK and AKT and the increase in the binding of both STAT-1 related complexes and PPAR-γ with specific DNA responsive elements. The synergism on cell growth inhibition correlated with a cell cycle arrest in G0/G1 phase, secondary to a long-lasting increase of both p21 and p27 expressions. Blockade of MAPK activation and the effect on p21 and p27 expressions, induced by IFN-β and TGZ combination, were due to the decreased activation of STAT-3 secondary to TGZ. IFN-β alone also increased p21 and p27 expression through STAT-1 phosphorylation and this effect was attenuated by the concomitant activation of IFNbeta-induced STAT-3-activation. The combination induced also an increase in autophagy and a decrease in anti-autophagic bcl-2/beclin-1 complex formation. This effect was mediated by the inactivation of the AKT→mTOR-dependent pathway. To the best of our knowledge this is the first evidence that PPAR-γ activation can counteract STAT-3-dependent escape pathways to IFN-β-induced growth inhibition through cell cycle perturbation and increased autophagic death in pancreatic cancer cells.  相似文献   
6.
In the present study we investigated the influence of antioxidants such as EDTA, α-tocopherol, troglitazone and acetylsalicylic acid on the long-term-glycation of LDL and its copper ion-catalyzed oxidation. We observed that (a) all antioxidants inhibited AGE-formation, while Amadori product formation was only diminished by extreme concentrations of acetylsalicylic acid, (b) glycated LDL was more susceptible to coppercatalyzed oxidation than unglycated LDL, and (c) the oxidation of native LDL was more dramatically inhibited by the antioxidants than that of glycated LDL. The observed differences may be a consequence of the significantly higher endogenous content in hydroperoxides of glycated LDL as compared to native LDL. Therapeutic implications of these findings regarding vitamin E, which is supposed to slow atherogenesis and the development of microvascular complications in diabetes, are obvious: Vitamin E-monotherapy, while blocking oxidative and AGE-modification of LDL, is unable to inhibit its AP-formation. As a consequence, tocopherol is susceptible to increased consumption by AP-associated radical production in hyperglycemic patients, which could be checked in part by the tocopherol-protecting agent troglitazone and/or by acetylsalicylic acid.  相似文献   
7.
8.
9.
10.
Drugs used in the treatment of type 2 diabetes and cardiovascular disease, specifically peroxisome proliferator‐activated receptor (PPAR) agonists, have been reported to affect bone cell function and fracture risk. In this study, we assessed the direct effects of PPAR‐γ agonists (rosiglitazone and troglitazone), used in the treatment of diabetes, and a PPAR‐α agonist (fenofibrate), used to treat hyperlipidaemia, on the function of primary osteoblasts and osteoclasts. Formation of ‘trabecular’ bone structures by rat calvarial osteoblasts was reduced by up to 85% in cultures treated with rosiglitazone and by 45% in troglitazone‐treated or fenofibrate‐treated cultures; at the same time, lipid droplet formation was increased by 40–70%. The expression of key osteogenic markers was similarly downregulated in cultures treated with PPAR agonists, whereas adipogenesis markers were upregulated. Formation of osteoclasts in cultures derived from mouse marrow diminished with fenofibrate treatment, whereas both glitazones reduced resorptive activity without affecting osteoclast number. Metformin, although not a PPAR agonist, is also commonly used in the treatment of type 2 diabetes. Here, metformin was found to have no effect on bone cell function. Taken together, these data suggest that PPAR‐γ agonists may enhance bone loss via increased adipogenesis at the expense of osteoblast formation. In contrast, PPAR‐α agonists may prevent bone loss. Given that the prevalence of diabetes and cardiovascular disease is expected to rise significantly, greater attention may need to be paid to the effects of PPAR agonists on bone homeostasis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号