首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
  2015年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
Jiménez JL  Davletov B 《Proteins》2007,68(3):770-778
Two protein families involved in membrane traffic, tricalbins and synaptotagmins, contain several copies of C2 domains and are related based on their sequence and domain architecture. Paradoxically, tricalbin and synaptotagmin C2 domains belong to different structural types with apparent circular permutation of terminal beta-strands. To understand whether a topological switch took place, we analyzed tricalbin and synaptotagmin-like C2 domains using two-dimensional structural analysis. We found that yeast tricalbins contain five to six C2 domains. One of these C2 domains possesses many features of synaptotagmin-like C2 domains and also carries a conserved C-terminal strand that is similar to its structural equivalent in synaptotagmin-like C2 domains, suggesting a structural permutation event. Indeed, among higher eukaryotes, animal tricalbins have evolved a C2 domain with synaptotagmin-like topology indicating that the structural conversion has taken place. Investigation of plant synaptotagmins, however, proves that they are direct tricalbin orthologs. Our analysis shows that beta-strand recombination is a possible evolutionary mechanism to generate new structural topologies with altered functional properties.  相似文献   
2.
The extended synaptotagmins (E-Syts) are ER proteins that act as Ca2+-regulated tethers between the ER and the plasma membrane (PM) and have a putative role in lipid transport between the two membranes. Ca2+ regulation of their tethering function, as well as the interplay of their different domains in such function, remains poorly understood. By exposing semi-intact cells to buffers of variable Ca2+ concentrations, we found that binding of E-Syt1 to the PI(4,5)P2-rich PM critically requires its C2C and C2E domains and that the EC50 of such binding is in the low micromolar Ca2+ range. Accordingly, E-Syt1 accumulation at ER-PM contact sites occurred only upon experimental manipulations known to achieve these levels of Ca2+ via its influx from the extracellular medium, such as store-operated Ca2+ entry in fibroblasts and membrane depolarization in β-cells. We also show that in spite of their very different physiological functions, membrane tethering by E-Syt1 (ER to PM) and by synaptotagmin (secretory vesicles to PM) undergo a similar regulation by plasma membrane lipids and cytosolic Ca2+.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号