首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2013年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1992年   1篇
排序方式: 共有13条查询结果,搜索用时 171 毫秒
1.
Choi WC  Kim MH  Ro HS  Ryu SR  Oh TK  Lee JK 《FEBS letters》2005,579(16):3461-3466
Lipase L1 from Geobacillus stearothermophilus L1 contains an unusual extra domain, making a tight intramolecular interaction with the main catalytic domain through a Zn2+-binding coordination. To elucidate the role of the Zn2+, we disrupted the Zn2+-binding site by mutating the zinc-ligand residues (H87A, D61A/H87A, and D61A/H81A/H87A/D238A). The activity vs. temperature profiles of the mutant enzymes showed that the disruption of the Zn2+-binding site resulted in a notable decrease in the optimal temperature for maximal activity from 60 to 45-50 degrees C. The mutations also abolished the Zn2+-induced thermal stabilization. The wild-type enzyme revealed a 34.6-fold increase in stabilization with the addition of Zn2+ at 60 degrees C, whereas the mutant enzymes exhibited no response to Zn2+. Additional circular dichroism spectroscopy studies also confirmed the structural stabilizing role of Zn2+ on lipase L1 at elevated temperatures.  相似文献   
2.
A lipase-producing Bacillus pumilus strain (B26) was isolated from a soil sample collected in Korea. The cloned gene showed that the lipase B26 composed of a 34-amino-acid signal sequence and a 181-amino-acid mature part corresponding to a molecular mass (Mr) of 19,225. Based on the Mr and the protein sequence, the lipase B26 belongs to the lipase family I.4. The optimum temperature and pH of the purified enzyme were 35 °C and 8.5, respectively. The lipase B26 showed a ‘Ca2+-independent thermostability and catalytic activity’. These are novel properties observed for the first time in lipase B26 among all bacterial lipases and correspond with the suggestion that this enzyme had no Ca2+-binding motif around the catalytic His156 residue. This enzyme seems to be a true lipase based on the experimental results that it could hydrolyze various long-chain triglycerides (C14–C18) and triolein (C18:1) and that it showed a typical interfacial activation mechanism toward both tripropionin and p-nitrophenyl butyrate.  相似文献   
3.
Changes of lipase-catalyzed lipolytic rates in a batch reactor   总被引:1,自引:0,他引:1  
A dramatic change of the reaction rate was observed for the lipase-catalyzed hyrolysis of tributyrin in a batch reactor. Immediately after the addition of the enzyme, the lipolysis rate increased continuously until a maximal reaction rate was reached. The duration of the induction was mainly controlled by the bulk enzyme concentration and the reactor stirring speed. The reaction rate dropped sharply after reaching its maximal value. The lipolysis decayed at a rate of about 0.012 min(-1), and was not affected by changes of the stirring speed. This decay was attributed to the fast deactivation of the surface-adsorbed lipase, and possibly to the extremely slow desorption of the inactivated species. For reaction time longer than 120 minutes, the lipolysis decreased at a much slower rate. Several mechanisms for the decay of the lipolysis rate were discussed.  相似文献   
4.
Using the classical emulsified system and the monomolecular film technique, we compared several interfacial properties of turkey pancreatic lipase (TPL) and human pancreatic lipase (HPL). TPL, like HPL, presented the interfacial activation phenomenon when vinyl ester was used as substrate. In the absence of colipase and bile salts, using tributyrin emulsion or monomolecular films of dicaprin at low surface pressure, TPL, unlike HPL, hydrolyzes pure tributyrin emulsion as well as dicaprin films maintained at low surface pressures. TPL was also able to hydrolyze triolein emulsion in the absence of any additive and despite the accumulation of long-chain free fatty acids at the interface. The difference of behaviors between TPL and HPL can be explained by the penetration power of each enzyme. The enzyme that presents the maximal pi(c) (TPL) interacts more efficiently with interfaces, and it is not denaturated at high interfacial energy. Turkey pancreatic lipase is more active on rac-dicaprin than HPL; a maximal ratio of 9 was found between the catalytic activities of the two lipases measured at their surface pressure optima (20 mN m(-1)). A kinetic study on the surface pressure dependency, stereospecificity, and regioselectivity of TPL was performed using enantiopure diglyceride (1,2-sn-dicaprin and 2,3-sn-dicaprin) and a prochiral isomer (1,3-dicaprin) that were spread as monomolecular films at the air-water interface. At low surface pressure (15 mN m(-1)), TPL acts preferentially on primary carboxylic ester groups of the diglyceride isomers (1,3-dicaprin), but at high surface pressure (23 mN m(-1)), this enzyme prefers both adjacent ester groups of the diglyceride isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin). HPL prefers adjacent ester groups of the diglyceride isomers (1,2-sn-dicaprin and 2,3-sn-dicaprin). Furthermore, TPL was found to be markedly stereospecific for the sn-1 position of the 1,2-sn-enantiomer of dicaprin at low surface pressure (15 mN m(-1)), while at high surface pressure (23 mN m(-1)), this lipase presents a stereopreference for the sn-3 position of the 2,3-sn-enantiomer of dicaprin. HPL is stereospecific for the sn-1 position of the 1,2-sn-enantiomer of dicaprin both at 15 and 23 mN m(-1).  相似文献   
5.
Abstract

Reactions involving tert-alcohols and their esters are generally not catalyzed by lipases. Candida rugosa lipase is one of the few lipases which shows at least limited catalytic activity towards tert-alcohols and their esters. Using transesterification of tributyrin with tertiary butyl and amyl alcohols as a model reaction, it is shown that precipitation of lipase by a tertiary alcohol in the presence of a buffer with optimum concentration enhances the catalytic activity 7 fold as compared to rates obtained with lyophilized powders. Optimization of the ratio of triglyceride to tert-alcohols and medium engineering gave an initial rate which was 41 times higher than that obtained with lyophilized powders. Hence, use of a simple enzyme formulation, coupled with optimization of reaction conditions led to Candida rugosa lipase becoming a useful catalyst for catalyzing transesterification involving tertiary alcohols.  相似文献   
6.
The fungus Geotrichum candidum was selected from isolates of oil-mill waste as a potent lipase producer. Factors affecting lipase production by the fungus G. candidum in yeast-extract-peptone medium have been optimized by using a Box–Behnken design with seven variables to identify the significant correlation between effects of these variables in the production of the enzyme lipase. The experimental values were found to be in accordance with the predicted values, the correlation coefficient is 0.9957. It was observed that the variables days (6), pH (7.0), temperature (30 °C), carbon (1.25%), nitrogen (2.0%), Tween (1.0%) and salt concentrations (0.5 mM) were the optimum conditions for maximum lipase production (87.7 LU/ml). The enzyme was purified to homogeneity with an apparent molecular mass of 32 kDa by SDS-PAGE. The optimum pH at 40 °C was 7.0 and the optimum temperature at pH 7.0 was 40 °C. The enzyme was stable within a pH range of 6.5 to 8.5 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, and EDTA. However, the presence of Ca2+ and Ba2+ ions enhanced the activity of the enzyme.  相似文献   
7.
Both turkey (TPL) and chicken (CPL) pancreatic lipases possess only one exposed sulfhydryl residue (Cystein114). After preincubation with the lipase, the sulfhydryl reagent C12 -TNB was found to be a powerful inhibitor of TPL whereas it had no effect on the CPL activity. Based on the 3D structure modelling and the molecular dynamics, the bulky dodecyl chain might hamper the lid movement of the TPL leading to the lipase inhibition upon reaction with C12 -TNB. Meanwhile, the predicted position of the C12 chain linked to Cystein114 of CPL could not block the lid opening mechanism which explains the absence of inhibition by C12 -TNB. Surprisingly, when added during the substrate hydrolysis, C12 -TNB activated the TPL but not the CPL that was slightly inhibited under these conditions. The 3D structure model generated for the open forms of C12 -TPL and C12 -CPL complexes showed that Cystein114 is still accessible and might react with C12 -TNB. Our models clearly explain the activation of TPL and the partial inhibition of CPL after the binding of the C12 chain to the enzyme.  相似文献   
8.
In this study, 341 Bacillus sp. strains were isolated from agricultural soils of Turkey. The potent extracellular lipase producer was selected. It was identified by 16S rRNA, named as Bacillus cereus ATA179. Optimal nutritional and physical parameters for lipase production were determined. Sucrose as the carbon source, (NH4)2HPO4 as the nitrogen source, CaCl2 as the metal ion were obtained. The best results of physical parameters were stated at 45°C, pH 7.0, shaking rate 50 rpm, inoculation amount 7% and inoculum age 24 h. ATA179 strain showed a 51% increase in enzyme production in the modified medium created by optimizing nutritional and physical conditions. Optimum pH value and temperature were found as 6.0 and 55 °C, respectively. CaCl2, Tween 20, Triton X-100 had an activating effect on enzyme activity. Vmax and Km kinetic values were found as 18.28 U/mL and 0.11 mM, respectively. The molecular weight was determined as 47 kDa. Lipase was found to be stable up to 75 days at -20 ºC. The potential of the enzyme in detergent industry was also investigated. It was not affected by detergent additives, but was found to be effective in removing oils from contaminated fabrics. This new lipase may have potential to be used in detergent industry.  相似文献   
9.
Lipid emulsions with saturated triacylglycerols (TAGs) with 4 to 10 carbons in each acyl chain were prepared to study how the oil component alters the stability of the lipid emulsions when phosphatidylcholines were used as emulsifiers. The average droplet size of the emulsions became smaller as the chain length of the TAG increased. For a given oil, emulsion with smaller droplets was formed with an emulsifier having higher HLB value. The influence of HLB values on the droplet size was biggest for the tributyrin (C4) emulsions. For the tricaprylin (C8) emulsions, droplet size was identical at given emulsifier concentrations regardless of HLB values. The HLB value and the concentration of the emulsifiers also affect the droplet size of the emulsions. The emulsions with smaller average droplet size were more stable than with bigger size for 20 days. The oil and water (o/w) interfacial tension is inversely proportional to the initial droplet size of the emulsion.  相似文献   
10.
Talaromyces thermophilus lipase (TTL) was found to hydrolyze monogalactosyl diacylglycerol (MGDG) and digalactosyl diacylglycerol (DGDG) substrates presented in various forms to the enzyme. Different assay techniques were used for each substrate: pHstat with dioctanoyl galactolipid-bile salt mixed micelles, barostat with dilauroyl galactolipid monomolecular films spread at the air-water interface, and UV absorption using a novel MGDG substrate containing α-eleostearic acid as chromophore and coated on microtiter plates. The kinetic properties of TTL were compared to those of the homologous lipase from Thermomyces lanuginosus (TLL), guinea pig pancreatic lipase-related protein 2 and Fusarium solani cutinase. TTL was found to be the most active galactolipase, with a higher activity on micelles than on monomolecular films or surface-coated MGDG. Nevertheless, the UV absorption assay with coated MGDG was highly sensitive and allowed measuring significant activities with about 10?ng of enzymes, against 100?ng to 10?μg with the pHstat. TTL showed longer lag times than TLL for reaching steady state kinetics of hydrolysis with monomolecular films or surface-coated MGDG. These findings and 3D-modelling of TTL based on the known structure of TLL pointed out to two phenylalanine to leucine substitutions in TTL, that could be responsible for its slower adsorption at lipid-water interface. TTL was found to be more active on MGDG than on DGDG using both galactolipid-bile salt mixed micelles and galactolipid monomolecular films. These later experiments suggest that the second galactose on galactolipid polar head impairs the enzyme adsorption on its aggregated substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号