首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   53篇
  108篇
  2024年   4篇
  2023年   1篇
  2020年   20篇
  2019年   22篇
  2018年   17篇
  2017年   18篇
  2016年   7篇
  2015年   4篇
  2014年   12篇
  2013年   3篇
排序方式: 共有108条查询结果,搜索用时 15 毫秒
1.
This paper presents a fully enclosed duck‐shaped triboelectric nanogenerator (TENG) for effectively scavenging energy from random and low‐frequency water waves. The design of the TENG incorporates the freestanding rolling mode and the pitch motion of a duck‐shaped structure generated by incident waves. By investigating the material and structural features, a unit of the TENG device is successfully designed. Furthermore, a hybrid system is constructed using three units of the TENG device. The hybrid system achieves an instantaneous peak current of 65.5 µA with an instantaneous output power density of up to 1.366 W m?2. Following the design, a fluid–solid interaction analysis is carried out on one duck‐shaped TENG to understand the dynamic behavior, mechanical efficiency, and stability of the device under various water wave conditions. In addition, the hybrid system is experimentally tested to enable a commercial wireless temperature sensor node. In summary, the unique duck‐shaped TENG shows a simple, cost‐effective, environmentally friendly, light‐weight, and highly stable system. The newly designed TENG is promising for building a network of generators to harvest existing blue energy in oceans, lakes, and rivers.  相似文献   
2.
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs.  相似文献   
3.
A triboelectric generator based on checker‐like interdigital electrodes (TEGC) with a sandwiched polyethylene terephthalate (PET) thin film that can convert translation kinetic energy in all directions to electricity is reported. The design of the sandwiched PET thin film can effectively avoid direct wear between metal electrodes and sliding panel. The mechanism of the TEGC is described in detail. The performance of the TEGC in different sliding directions is studied, indicating a maximum output power density of 1.9 W m‐2 and open‐circuit voltage of 210 V achieved in the X or Y sliding direction. The TEGC is used to charge a 110 μF commercial capacitor to 5 V in 35 s and light up two light‐emitting diodes (LEDs) connected with the capacitor simultaneously. The TEGC based mouse pad and sliding panel are fabricated to harvest mouse operation energy to light up LEDs connected in antiparallel when the computer mouse operates a game. The TEGC has advantages of being flexible, light weight, durable, cost effective, and portable by folding or rolling into a small part. This work presents a significant progress toward the structure design of triboelectric generator for its practical applications.  相似文献   
4.
Direct conversion of mechanical energy into direct current (DC) by triboelectric nanogenerators (TENGs) is one of the desired features in terms of energy conversion efficiency. Although promising applications have been reported using the triboelectric effect, effective DC generating TENGs must be developed for practical purposes. Here, it is reported that continuous DC generation within a TENG itself, without any circuitry, can be achieved by triggering air breakdown via triboelectrification. It is demonstrated that DC generation occurs in combination with i) charge accumulation to generate air breakdown, ii) incident discharge (microdischarge), and iii) conveyance of charges to make the device sustainable. 10.5 mA m?2 of output current and 10.6 W m?2 of output power at 33 MΩ load resistance are achieved. Compared to the best DC generating TENGs ever reported, the TENG in this present study generates about 20 times larger root‐mean square current density.  相似文献   
5.
6.
Lithium metal as an ultimate anode material of future rechargeable batteries may furnish the highest energy density for its pairing cathode, although preventing the growth of lithium dendrites in liquid electrolytes is a major challenge. This work reports that stable lithium metal anodes can be achieved by charging with high‐frequency sinusoidal ripple current generated by rotating triboelectric nanogenerators (R‐TENGs). Compared with constant DC current charging, sinusoidal ripple current charging by R‐TENG improves the uniformity of lithium deposition during cycling test. Consequently, symmetric Li/Li cells exhibit lower overpotential and better cycling stability. In addition, full cells assembled with lithium metal anodes and LiFePO4 cathodes show considerably improved capacity retention when charged by R‐TENG's sinusoidal ripple current (99.5%) compared to constant current (78.7%) after 200 cycles. The charging strategy device in this work provides a promising direction toward improving the cycle life of Li metal batteries. In addition, the combination of R‐TENGs with Li metal batteries offers an encouraging solution for achieving stable energy supply in self‐powered systems.  相似文献   
7.
8.
9.
A new “wireless” paradigm for harvesting mechanical energy via a 3D‐printed wireless triboelectric nanogenerator (W‐TENG) comprised of an ecofriendly graphene polylactic acid (gPLA) nanocomposite and Teflon is demonstrated. The W‐TENG generates very high output voltages >2 kV with a strong electric field that enables the wireless transmission of harvested energy over a distance of 3 m. The W‐TENG exhibited an instantaneous peak power up to 70 mW that could be wirelessly transmitted for storage into a capacitor obviating the need for hard‐wiring or additional circuitry. Furthermore, the use of W‐TENG for wireless and secure actuation of smart‐home applications such as smart tint windows, temperature sensors, liquid crystal displays, and security alarms either with a single or a specific user‐defined passcode of mechanical pulses (e.g., Fibonacci sequence) is demonstrated. The scalable additive manufacturing approach for gPLA‐based W‐TENGs, along with their high electrical output and unprecedented wireless applications, is poised for revolutionizing the present mechanical energy harvesting technologies.  相似文献   
10.
Water wave energy is a promising renewable energy source that may alleviate the rising concerns over current resource depletion, but it is rarely exploited due to the lack of efficient energy harvesting technologies. In this work, a hybrid system with a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) based on an optimized inner topological structure is reported to effectively harvest water wave energy. The TENG with etched polytetrafluoroethylene films and Cu electrodes utilizing the contact‐freestanding mode is designed into a cubic structure, in which the EMG is well hybridized. An integration of TENG and EMG achieves mutual compensation of their own merits, enabling the hybrid system to deliver satisfactory output over a broad range of operation frequency. The output performance of TENG with varied inner topological structures is experimentally and theoretically compared, and a concept is proposed to further clarify the energy conversion efficiency, which should be considered in designing energy harvesting devices. The influences of oscillation frequency, amplitude, and dielectric materials on the output performance of the hybrid system are comprehensively studied on different platforms. Furthermore, the optimum operation frequency ranges for TENG and EMG are concluded. The proposed hybrid nanogenerator renders an effective approach toward large‐scale blue energy harvesting over a broad frequency range.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号