首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20523篇
  免费   1357篇
  国内免费   1128篇
  2024年   76篇
  2023年   361篇
  2022年   450篇
  2021年   606篇
  2020年   610篇
  2019年   638篇
  2018年   643篇
  2017年   509篇
  2016年   555篇
  2015年   740篇
  2014年   938篇
  2013年   1263篇
  2012年   703篇
  2011年   845篇
  2010年   641篇
  2009年   867篇
  2008年   893篇
  2007年   946篇
  2006年   865篇
  2005年   782篇
  2004年   686篇
  2003年   619篇
  2002年   563篇
  2001年   462篇
  2000年   472篇
  1999年   448篇
  1998年   374篇
  1997年   348篇
  1996年   344篇
  1995年   341篇
  1994年   310篇
  1993年   325篇
  1992年   300篇
  1991年   317篇
  1990年   264篇
  1989年   266篇
  1988年   255篇
  1987年   233篇
  1986年   230篇
  1985年   276篇
  1984年   329篇
  1983年   190篇
  1982年   333篇
  1981年   235篇
  1980年   182篇
  1979年   131篇
  1978年   64篇
  1977年   75篇
  1976年   33篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
1.
《Developmental cell》2021,56(21):2952-2965.e9
  1. Download : Download high-res image (167KB)
  2. Download : Download full-size image
  相似文献   
2.
Many of the world's most important food crops such as rice, barley and maize accumulate silicon (Si) to high levels, resulting in better plant growth and crop yields. The first step in Si accumulation is the uptake of silicic acid by the roots, a process mediated by the structurally uncharacterised NIP subfamily of aquaporins, also named metalloid porins. Here, we present the X-ray crystal structure of the archetypal NIP family member from Oryza sativa (OsNIP2;1). The OsNIP2;1 channel is closed in the crystal structure by the cytoplasmic loop D, which is known to regulate channel opening in classical plant aquaporins. The structure further reveals a novel, five-residue extracellular selectivity filter with a large diameter. Unbiased molecular dynamics simulations show a rapid opening of the channel and visualise how silicic acid interacts with the selectivity filter prior to transmembrane diffusion. Our results will enable detailed structure–function studies of metalloid porins, including the basis of their substrate selectivity.  相似文献   
3.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
4.
The fungal fruiting body or mushroom is a multicellular structure essential for sexual reproduction. It is composed of dikaryotic cells that contain one haploid nucleus from each mating partner sharing the same cytoplasm without undergoing nuclear fusion. In the mushroom, the pileus bears the hymenium, a layer of cells that includes the specialized basidia in which nuclear fusion, meiosis, and sporulation occur. Coprinopsis cinerea is a well-known model fungus used to study developmental processes associated with the formation of the fruiting body. Here we describe that knocking down the expression of Atr1 and Chk1, two kinases shown to be involved in the response to DNA damage in a number of eukaryotic organisms, dramatically impairs the ability to develop fruiting bodies in C. cinerea, as well as other developmental decisions such as sclerotia formation. These developmental defects correlated with the impairment in silenced strains to sustain an appropriated dikaryotic cell cycle. Dikaryotic cells in which chk1 or atr1 genes were silenced displayed a higher level of asynchronous mitosis and as a consequence aberrant cells carrying an unbalanced dose of nuclei. Since fruiting body initiation is dependent on the balanced mating-type regulator doses present in the dikaryon, we believe that the observed developmental defects were a consequence of the impaired cell cycle in the dikaryon. Our results suggest a connection between the DNA damage response cascade, cell cycle regulation, and developmental processes in this fungus.  相似文献   
5.
6.
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
Highlights
  • •Flow cytometry analysis is used to isolate ASC speck(+) NPC cells.
  • •Proteome analysis of ASC speck(+) NPC cells reveals enriched mitochondrial OxPhos proteins.
  • •OxPhos proteins mediate NLRP3 inflammasome activation through mtROS.
  • •OxPhos proteins, NDUFB8 and ATP5B are correlated with NPC local recurrence.
  相似文献   
7.
8.
9.
The complete steady-state I–V relationship of α-aminoisobutyric acid transport across the plasmalemma of rhizoid cells from Riccia fluitans has been measured and analysed with special emphasis on α-aminoisobutyric acid equilibrium and saturation conditions. (A) The electrical data show that: (1) the amino acid-induced electrical current saturates after the addition of the amino acid, regardless of the concentration; (2) a steady state is reached 1–2 h after incubation in α-aminoisobutyric acid, but after less that 5 min in the presence of 1 mM CN; (3) the steady-state I–V characteristic of α-aminoisobutyric acid transport is a sigmoid curve and fairly symmetric in current with respect to the voltage axis; and (4) the equilibrium potential is clearly a function of the amino acid accumulation ratio. It is suggested that the sigmoid curve represents the characteristic of carrier-mediated α-aminoisobutyric acid transport with a voltage-insensitive step, possibly the translocation of the unloaded carrier, rate-limiting. Since under normal conditions the voltage-sensitive rate constant koi is much greater than kio, it is further suggested that the energy to drive this system is put into the transfer of positive charge from outside to the cytoplasm. (B) Accumulation ratios have been determined by inspection of current-voltage data, and additionally by compartmental analysis on green thalli from Riccia fluitans. Both methods give ratios far too low compared with the thermodynamically possible accumulation of about 104. It is suggested that substantial leakages via different non-electrical pathways prevent equilibrium at steady state, and it is concluded that in such leaky systems the thermodynamic equilibrium condition is not suitable for estimating stoichiometries.  相似文献   
10.
Large scale irrigation schemes are vitally important for food security in developing countries. This is especially relevant in subtropical countries where there is pressure on their water resources. However, the potential impacts on the fish communities of the rivers associated with these irrigation systems are extensive and potentially devastating. Therefore, the aim of the study was to evaluate the impact of the Vaalharts Irrigation Scheme (VHIS) on the fish community of two rivers (Harts and Vaal rivers) in the subtropical region of South Africa. The fish community was assessed during a three year period from 2007 to 2009 together with environmental and habitat quality parameters. A multivariate approach together with a local biotic index was used to determine the present ecological state and the environmental drivers responsible for the fish community structure. The results indicated that the fish community was in a largely natural state at the start of the VHIS and increasingly became modified due to various environmental parameters being affected by the irrigation scheme. Annual variation in the fish community structures was high while nitrate, zinc and sulphates corresponded with changes in the fish community. The outcome of the study highlighted that a lack of long term monitoring of fish community structures together with environmental and habitat parameters are a major challenge in many developing countries that can potentially affect management of irrigation schemes and the fish communities associated with the aquatic ecosystems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号