首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1779篇
  免费   113篇
  国内免费   40篇
  2024年   4篇
  2023年   27篇
  2022年   53篇
  2021年   42篇
  2020年   38篇
  2019年   33篇
  2018年   68篇
  2017年   25篇
  2016年   22篇
  2015年   60篇
  2014年   120篇
  2013年   131篇
  2012年   67篇
  2011年   86篇
  2010年   108篇
  2009年   103篇
  2008年   101篇
  2007年   133篇
  2006年   102篇
  2005年   90篇
  2004年   68篇
  2003年   56篇
  2002年   47篇
  2001年   32篇
  2000年   30篇
  1999年   22篇
  1998年   31篇
  1997年   25篇
  1996年   21篇
  1995年   17篇
  1994年   23篇
  1993年   26篇
  1992年   16篇
  1991年   9篇
  1990年   11篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   2篇
  1984年   11篇
  1983年   14篇
  1982年   10篇
  1981年   8篇
  1980年   5篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
排序方式: 共有1932条查询结果,搜索用时 31 毫秒
1.
Na+/H+ antiporters comprise a super-family (CPA) of membrane proteins that are found in all kingdoms of life and are essential in cellular homeostasis of pH, Na+ and volume. Their activity is strictly dependent on pH, a property that underpins their role in pH homeostasis. While several human homologues have long been drug targets, NhaA of Escherichia coli has become the paradigm for this class of secondary active transporters as NhaA crystal structure provided insight into the architecture of this molecular machine. However, the mechanism of the strict pH dependence of NhaA is missing. Here, as a follow up of a recent evolutionary analysis that identified a ‘CPA motif’, we rationally designed three E. coli NhaA mutants: D133S, I134T, and the double mutant D133S-I134T. Exploring growth phenotype, transport activity and Li+-binding of the mutants, we revealed that Asp133 does not participate directly in proton binding, nor does it directly dictate the pH-dependent transport of NhaA. Strikingly, the variant I134T lost some of the pH control, and the D133S-Il134T double mutant retained Li+ binding in a pH independent fashion. Concurrent to loss of pH control, these mutants bound Li+ more strongly than the WT. Both positions are in close vicinity to the ion-binding site of the antiporter, attributing the results to electrostatic interaction between these residues and Asp164 of the ion-binding site. This is consistent with pH sensing resulting from direct coupling between cation binding and deprotonation in Asp164, which applies also to other CPA antiporters that are involved in human diseases.  相似文献   
2.
Insulin stimulated autophosphorylation of the beta-subunit of the insulin receptor purified from Fao hepatoma cells or purified from Chinese hamster ovary (CHO/HIRC) or Swiss 3T3 (3T3/HIRC) cells transfected with the wild-type human insulin receptor cDNA. Autophosphorylation of the purified receptor occurred in at least two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C-terminus containing Tyr-1316 and Tyr-1322. In the presence of antiphosphotyrosine antibody (alpha-PY), autophosphorylation of the purified receptor was inhibited nearly 80% during insulin stimulation. Tryptic peptide mapping showed that alpha-PY inhibited autophosphorylation of both tyrosyl residues in the C-terminus and one tyrosyl residue in the regulatory region, either Tyr-1150 or Tyr-1151. Thus, a bis-phosphorylated form of the regulatory region accumulated in the presence of alpha-PY, which contained Tyr(P)-1146 and either Tyr(P)-1150 or 1151. In intact Fao, CHO/HIRC, and 3T3/HIRC cells, insulin stimulated tyrosyl phosphorylation of the beta-subunit of the insulin receptor. Tryptic peptide mapping indicated that the regulatory region of the beta-subunit was mainly (greater than 80%) bis-phosphorylated; however, all three tyrosyl residues of the regulatory region were phosphorylated in about 20% of the receptors. As the phosphotransferase was activated by tris-phosphorylation but not bis-phosphorylation of the regulatory region of the beta-subunit (White et al.: Journal of Biological Chemistry 263:2969-2980, 1988), the extent of autophosphorylation in the regulatory region may play an important regulatory role during signal transmission in the intact cell.  相似文献   
3.
《Cell reports》2020,30(6):1835-1847.e9
  1. Download : Download high-res image (127KB)
  2. Download : Download full-size image
  相似文献   
4.
Ammineruthenium(III) complexes have been found to act as electron acceptors for the transplasmalemma electron transport system of animal cells. The active complexes hexaammineruthenium(III), pyridine pentaammineruthenium(III), and chloropentaammineruthenium(III) range in redox potential (E 0) from 305 to –42 mV. These compounds also act as electron acceptors for the NADH dehydrogenase of isolated plasma membranes. Stimulation of HeLa cell growth, in the absence of calf serum, by these compounds provides evidence that growth stimulation by the transplasma membrane electron transport system is not entirely based on reduction and uptake of iron.  相似文献   
5.
S Y Shaw  R A Laursen  M B Lees 《FEBS letters》1989,250(2):306-310
The existence of disulfide crosslinks limits the number of possible folded structures a protein can assume. Thus localization of disulfide and thiol groups is a key to understanding the conformation and orientation of myelin proteolipid protein (PLP) in the myelin membrane. [14C]Carboxamidomethylated PLP was fragmented with chymotrypsin, and the resulting mixture was partially separated by reversed-phase HPLC. Purified 14C-labeled peptides and a disulfide containing peptide were characterized by amino acid analysis. These experiments showed that Cys-32 and Cys-34 are free thiols, and are presumably on the interior of the cell or within the membrane bilayer, and that Cys-200 and Cys-219 are joined by a disulfide bond, and are probably located on the extracellular face of the membrane. Sequence analysis experiments indicate that Cys-5, Cys-6 and Cys-9 are linked by disulfides, probably to other parts of the protein on the extracellular face of the membrane.  相似文献   
6.
Insulin signal transmission through the plasma membrane was studied in terms of relationship between basal autophosphorylation of the β-subunit and the ability by bind insulin by the -subunit of the insulin receptor. In a cell free system, receptors phosphorylated on tyrosine residues in the absence of insulin were separated from non-phosphorylated receptors using antiphosphotyrosine antibodies. Insulin binding assays were then performed on basally autophosphorylated and on non-phosphorylated receptors. We found that the tyrosine phosphorylated receptors, which corresponded to 25% of the total number of receptors, were accountable for 60–80% of insulin binding. Scatchard representation of binding data has shown that the plot corresponding to tyrosine phosphorylated receptors was localized above, and was steeper than the plot corresponding to non-phosphorylated receptors. These data make it likely that the conformation of -subunit which favours ligand binding is connected to the conformation of β-subunit which favours phosphate reception on tyrosine residues. Reciprocally, the high-affinity conformation of insulin receptor seems to become stabilized by basal autophosphorylation.  相似文献   
7.
A new computer-aided molecular modeling approach based on the concept of three-dimensional (3D) molecular hydrophobicity potential has been developed to calculate the spatial organization of intramembrane domains in proteins. The method has been tested by calculating the arrangement of membrane-spanning segments in the photoreaction center ofRhodopseudomonas viridis and comparing the results obtained with those derived from the X-ray data. We have applied this computational procedure to the analysis of interhelical packing in membrane moiety of Na+, K+-ATPase. The work consists of three parts. In Part I, 3D distributions of electrostatic and molecular hydrophobicity potentials on the surfaces of transmembrane helical peptides were computed and visualized. The hydrophobic and electrostatic properties of helices are discussed from the point of view of their possible arrangement within the protein molecule. Interlocation of helical segments connected with short extramembrane loops found by means of optimization of their hydrophobic/hydrophilic contacts is considered in Part II. The most probable 3D model of packing of helical peptides in the membrane domain of Na+, K+-ATPase is discussed in the final part of the work.  相似文献   
8.
The versatility of proteolytic enzymes   总被引:7,自引:0,他引:7  
The growing realization of their physiological importance has generated renewed interest in the study of proteolytic enzymes. Modern methods of protein chemistry and molecular biology have revealed new insights into the protein and gene structure of a variety of protein precursors and their processing by limited proteolysis. Examples are given in this review for transmembrane processes and the role of signal peptidases of both eukaryotic and prokaryotic origin, the processing of prohormones and precursors of growth factors, protein components of blood coagulation, fibrinolysis, and of the complement system, and a group of granulocyte proteases, including the mast cell serine proteases. The relationship of homologous domains found in many of these proteases and their zymogens to protein evolution is a recurrent theme of this discussion.  相似文献   
9.
Isolation of a brain peptide identical to the intestinal PHI (peptide HI)   总被引:5,自引:0,他引:5  
The isolation of a brain peptide identical to the intestinal peptide PHI (peptide HI) is described. The peptide was isolated from porcine brain extract using a chemical assay method based on its C-terminal isoleucine amide structure. The complete amino acid sequence of the peptide was found to be: His-Ala-Asp-Gly-Val-Phe-Thr-Ser-Asp-Phe-Ser-Arg-Leu-Leu-Gly-Gln-Leu-Ser-Ala- Lys-Lys-Tyr-Leu-Glu-Ser-Leu-Ile-NH2. This sequence is identical to the intestinal peptide thus demonstrating PHI to be a brain-gut peptide. The role of PHI in the central nervous system as a neurotransmitter or neuromodulator is discussed.  相似文献   
10.
The mechanism(s) by which zinc is transported into cells has not been identified. Since zinc uptake is inhibited by reducing the temperature, zinc uptake may depend on the movement of plasma membrane micoenvironments, such as endocytosis or potocytosis. We investigated the potential role of potocytosis in cellular zinc uptake by incubating normal and acrodermatitis enteropathica fibroblasts with nystatin, a sterol-binding drug previously shown to inhibit potocytosis. Zinc uptake was determined during initial rates of uptake (10 min) following incubation of the fibroblasts in 50 μg nystatin/mL or 0.1% dimethyl-sulfoxide for 10 min at 37°C. The cells were then incubated with 1 to 30 μM 65zinc. Michaelis-Menten kinetics were observed for zinc uptake. Nystatin inhibited zinc uptake in both the normal and AE fibroblasts. Reduced cellular uptake of zinc was associated with its internalization, not its external binding. In normal fibroblasts, nystatin significantly reduced theK m 56% and theV max 69%. In the AE fibroblasts, nystatin treatment significantly reduced theV max 59%, but did not significantly affect theK m. The AE mutation alone affected theV max for cellular zinc uptake. The control AE fibroblasts exhibited a 40% reduction inV max compared to control normal fibroblasts. We conclude that nystatin exerts its effect on zinc uptake by reducing the velocity at which zinc traverses the cell membrane, possibly through potocytosis. Furthermore, the AE mutation also effects zinc transport by reducing zinc transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号