首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   7篇
  2020年   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   4篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  1991年   1篇
排序方式: 共有21条查询结果,搜索用时 46 毫秒
1.
Organic field‐effect transistors (OFETs) are the basic elements of organic circuits towards flexible, printable, and wearable electronics. Low‐energy‐consumption OFETs with high mobility are the prerequisite for practical applications. After 30 years of development, OFETs have progressed rapidly, from field‐effect materials to devices, and from individual device to small‐ and medium‐scale integration. Here, a brief retrospective of OFETs' development over the past decades, and the emerging opportunities and challenges from device physics, multifunctional materials to integrated application are presented.  相似文献   
2.

Background

Nowadays, there is a tremendous need for cheap disposable sensing devices for medical applications. Materials such as Carbon Nanotubes (CNTs) and regioregular P3HT are proven to offer a huge potential as cost-effective and solution processable semiconductors for (bio)sensing applications.

Methods

CNT-based field-effect transistors (CNT-FETs) as well as regioregular P3HT-based ones (P3HT-FETs) are fabricated and operated in the so-called electrolyte-gated configuration. The active layer of the P3HT-FETs consists of a spin-coated regioregular P3HT layer, which serves on one hand as the active sensing element and on the other hand as passivation layer for the transistor's metal contacts. The active layer of the nanotube transistors consists of a randomly distributed single walled CNT-network (> 90% semiconducting tubes) deposited from a CNT-ink solution by spin-coating.

Results

We compare both devices concerning their stability in aqueous environment and their response when exposed to buffers with different pH. We found that even if P3HT shows lower stability its pH sensitivity is reproducible even after long-term measurements.

Conclusion

CNT-FETs and P3HT-FETs offer different advantages and drawbacks concerning their stability in solution and the ease of fabrication. A discussion of their different sensing mechanisms as well as sensitivity is given here.

General Significance

This work reports on fast and cost-effective production of solution processable thin-film transistors based on carbon nanotubes and regioregular P3HT and demonstrates their suitability as reliable pH sensors. This article is part of a Special Issue entitled Organic Bioelectronics — Novel Applications in Biomedicine.  相似文献   
3.
We demonstrate a novel DNA hybridization detection method with organic thin film transistors. DNA molecules are immobilized directly on the surface of organic semiconductors, producing an unambiguous doping-induced threshold voltage shift upon hybridization. With these shifts, single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) are differentiated successfully. This method is expected to result in higher sensitivity than the main competitive technology, ISFET-based sensors because of the direct exposure of DNA molecules to sensitive layers. Factors that influence sensor sensitivity have been analyzed and optimum conditions have been determined using statistically designed experiments. Under the optimum conditions, the maximum difference between saturation current ratios caused by ssDNA and dsDNA reaches as high as 70%. In order to make DNA detection fast, we also demonstrate rapid on-chip electrically enhanced hybridization using the TFTs. These technologies together will enable the realization of disposable, rapid-turnaround tools for field-deployable genomic diagnosis.  相似文献   
4.
Cellular metabolism is a very complex process. The biochemical pathways are fundamental structures of biology. These pathways possess a number of regeneration steps which facilitate energy shuttling on a massive scale. This facilitates the biochemical pathways to sustain the energy currency of the cells. This concept has been mimicked using electronic circuit components and it has been used to increase the efficiency of bio-energy generation. Six of the carbohydrate biochemical pathways have been chosen in which glycolysis is the principle pathway. All the six pathways are interrelated and coordinated in a complex manner. Mimic circuits have been designed for all the six biochemical pathways. The components of the metabolic pathways such as enzymes, cofactors etc., are substituted by appropriate electronic circuit components. Enzymes are related to the gain of transistors by the bond dissociation energies of enzyme-substrate molecules under consideration. Cofactors and coenzymes are represented by switches and capacitors respectively. Resistors are used for proper orientation of the circuits. The energy obtained from the current methods employed for the decomposition of organic matter is used to trigger the mimic circuits. A similar energy shuttle is observed in the mimic circuits and the percentage rise for each cycle of circuit functioning is found to be 78.90. The theoretical calculations have been made using a sample of domestic waste weighing 1.182 kg. The calculations arrived at finally speak of the efficiency of the novel methodology employed.  相似文献   
5.
We report a novel micro-potentiometric hemoglobin (Hb) immunosensor based on electrochemically synthesized polypyrrole (PPy)–gold nanoparticles (AuNPs) composite. PPy–AuNPs film with AuNPs uniformly distributed in it was deposited on gold electrode surface by a simple and direct procedure, without the addition of any nanoparticles or reducing agent. And this generic method makes it possible to deposite different polymers on miniaturized electrodes. With the existence of AuNPs, the antibody immobilization onto the electrode surface was facilitated. Morphology study by field emission scanning electron microscope (FE-SEM) confirms the presence of AuNPs in PPy. Based on an ion-sensitive field-effect transistors (ISFETs) integrated chip, a micro-potentiometric immunosensor for Hb and hemoglobin-A1c (HbA1c) has been constructed. The sensor response was linear over the concentration range 60–180 μg/ml Hb and 4–18 μg/ml HbA1c. The Hb concentration in whole blood samples has also been analysed, with a linear dose–response behavior between 125 and 197 μg/ml and a sensitivity of 0.20 mV μg−1 ml. The measuring ranges of the developed Hb and HbA1c immunosensors meet the clinical demand for measuring the HbA1c/Hb ratio of 5–20%. This sensor results in simple and rapid differential measurement of Hb and HbA1c, and has great potential to become an inexpensive and portable device for monitoring of diabetes.  相似文献   
6.
A novel naphthalene diimide (NDI)‐based small molecule (BiNDI) is designed and synthesized by linking two NDI monomers via a vinyl donor moiety. The electronic structure of BiNDI is carefully investigated by ultraviolet photoelectron spectroscopy (UPS). Density functional theory (DFT) sheds further light on the molecular configuration and energy level distribution. Thin film transistors (TFT) based on BiNDI show a highest electron mobility of 0.365 cm2 V?1 s?1 in ambient atmosphere. Organic photovoltaics (OPVs) by using BiNDI as the acceptor show a highest power conversion efficency (PCE) of 2.41%, which is the best result for NDI‐based small molecular acceptors. Transmission electron microscopy (TEM), atomic force microscopy (AFM), grazing incidence wide‐angle X‐ray diffraction (GIXD), and X‐ray photo­electron spectroscopy (XPS) characterization to understand the morphology and structure order of the bulk heterojunction film are performed. It is found that small amount of 1,8‐diiodooctane (DIO) (i.e., 0.5%) in the blended film facilitates the crystallization of BiNDI into fibrillar crystals, which is beneficial for the improvement of device performance.  相似文献   
7.
Understanding the vertical phase separation of donor and acceptor compounds in organic photovoltaics is requisite for the control of charge transport behavior and the achievement of efficient charge collection. Here, the vertically phase‐separated morphologies of poly(3‐hexylthiophene):[6,6]phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) blend films are examined with transmission electron microtomography, dynamic secondary ion mass spectroscopy, and X‐ray photoelectron spectroscopy. The 3D morphologies of the processed films are analyzed and how the solvent additive causes vertical segregation is determined. The photocurrent–voltage characteristics of the vertically segregated blend films are strongly dependent on the 3D morphological organization of the donor and acceptor compounds in the photoactive layer. This dependence is correlated with asymmetric carrier transport at the buried interface and the air surface in the vertically segregated blend films.  相似文献   
8.
9.
Microtubules (MTs) are important cytoskeletal superstructures implicated in neuronal morphology and function, which are involved in vesicle trafficking, neurite formation and differentiation and other morphological changes. The structural and functional properties of MTs depend on their high intrinsic charge density and functional regulation by the MT depolymerising properties of changes in Ca2 +  concentration. Recently, we reported on remarkable properties of isolated MTs, which behave as biomolecular transistors capable of amplifying electrical signals (Priel et al., Biophys J 90:4639–4643, 2006). Here, we demonstrate that MT-bathing (cytoplasmic) Ca2 +  concentrations modulate the electrodynamic properties of MTs. Electrical amplification by MTs was exponentially dependent on the Ca2 +  concentration between 10 − 7 and 10 − 2 M. However, the electrical connectivity (coupling) of MTs was optimal at a narrower window of Ca2 +  concentrations. We observed that while raising bathing Ca2 +  concentration increased electrical amplification by MTs, energy transfer was highest in the presence of ethylene glycol tetraacetic acid (lowest Ca2 +  concentration). Our data indicate that Ca2 +  is an important modulator of electrical amplification by MTs, supporting the hypothesis that this divalent cation, which adsorbs onto the polymer’s surface, plays an important role as a regulator of the electrical properties of MTs. The Ca2 + -dependent ability of MTs to modulate and amplify electrical signals may provide a novel means of cell signaling, likely contributing to neuronal function.  相似文献   
10.
Conjugated polymers, e.g., polyacetylene and polythiophenes, conjugated thiophene oligomers and metallophthalocyanines have been proposed in the literature as organic semiconductors for the fabrication of organic-based field-effect transistors, FET. The poor performances generally shown by these FET have been attributed to the very low carrier mobility in organic semiconductors, and the improvement of this parameter has been the objective of a large number of works. The analysis of the mode of operation of organic-based FET, which operate through the formation of an accumulation layer, shows that an ohmic contribution has to be taken into account in the total observed current output of the devices. The conductivity of the organic semiconductor plays thus a significant role in the FET characteristics, although this point has been up to now rarely considered. In this regard, most of the claims in the literature about high mobility achievements are shown to be of limited significance. Conjugated oligomers are actually the only class of organic semiconductors presenting high mobility together with low conductivity, which, furthermore, indicates that interchain transfer of charge may be a much more efficient process than generally believed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号