首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   3篇
  国内免费   1篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2016年   2篇
  2015年   4篇
  2014年   4篇
  2013年   35篇
  2012年   1篇
  2009年   2篇
  2008年   6篇
  2007年   2篇
  2006年   4篇
  2005年   5篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   9篇
  2000年   3篇
  1999年   5篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
1.
The Trichoderma reesei beta-xylosidase (EC 3.2.1.37) is used to catalyze the production of alkyl beta-D-xyloside. Two general methods of production are tested and compared using the same enzyme: transglycosylation and reverse hydrolysis. Using both methods, primary, secondary, and tertiary alcohols are studied as acceptors. In kinetically controlled process (transglycosylation), the chosen donor is methyl beta-D-xyloside and primary, secondary, and tertiary alkyl alcohols are accepted. In the equilibrium-controlled synthesis, the donor is xylose whereas acceptors are only primary and secondary alcohols. The influence of the donor concentration is investigated in both processes. The yields of the kinetically controlled reactions are higher compared with those of the equilibrium-controlled synthesis. The specificity of the beta linkage is confirmed by proton nuclear magnetic resonance ((1)H NMR) analysis. (c) 1994 John Wiley & Sons, Inc.  相似文献   
2.
Purified β-glucosidase from Fusarium oxysporum catalyses hydrolysis and transglycosylation reactions. By utilizing the transglycosylation reaction, trisaccharides and alkyl β-d-glucosides were synthesized under optimal conditions in the presence of various disaccharides and alcohols. The yields of trisaccharides and alkyl β-d-glucosides were 22–37% and 10–33% of the total sugar, respectively. The enzyme retained 70–80% of its original activity in the presence of 25% (w/v) methanol, ethanol and propanol. Thus, β-glucosidase from F. oxysporum appears to be an ideal enzyme for the synthesis of useful trisaccharides and alkyl β-d-glucosides.  相似文献   
3.
Certain transglucanases can covalently graft cellulose and mixed-linkage β-glucan (MLG) as donor substrates onto xyloglucan as acceptor substrate and thus exhibit cellulose:xyloglucan endotransglucosylase (CXE) and MLG:xyloglucan endotransglucosylase (MXE) activities in vivo and in vitro. However, missing information on factors that stimulate or inhibit these hetero-transglucosylation reactions limits our insight into their biological functions. To explore factors that influence hetero-transglucosylation, we studied Equisetum fluviatile hetero-trans-β-glucanase (EfHTG), which exhibits both CXE and MXE activity, exceeding its xyloglucan:xyloglucan homo-transglucosylation (XET) activity. Enzyme assays employed radiolabelled and fluorescently labelled oligomeric acceptor substrates, and were conducted in vitro and in cell walls (in situ). With whole denatured Equisetum cell walls as donor substrate, exogenous EfHTG (extracted from Equisetum or produced in Pichia) exhibited all three activities (CXE, MXE, XET) in competition with each other. Acting on pure cellulose as donor substrate, the CXE action of Pichia-produced EfHTG was up to approximately 300% increased by addition of methanol-boiled Equisetum extracts; there was no similar effect when the same enzyme acted on soluble donors (MLG or xyloglucan). The methanol-stable factor is proposed to be expansin-like, a suggestion supported by observations of pH dependence. Screening numerous low-molecular-weight compounds for hetero-transglucanase inhibition showed that cellobiose was highly effective, inhibiting the abundant endogenous CXE and MXE (but not XET) action in Equisetum internodes. Furthermore, cellobiose retarded Equisetum stem elongation, potentially owing to its effect on hetero-transglucosylation reactions. This work provides insight and tools to further study the role of cellulose hetero-transglucosylation in planta by identifying factors that govern this reaction.  相似文献   
4.
Abstract

9-(3-Deoxy-β-d-erythro-pentofuranosyl)-2,6-diaminopurine (2) was synthesized by an enzymatic transglycosylation of 2,6-diaminopurine using 3′-deoxycytidine (1) as a donor of the sugar moiety. Nucleoside 2 was transformed to 3′-deoxy guanosine (3), 9-(3-deoxy-β-d-erythro-pentofuranosyl)-2-amino-6-oxopurine (3′-deoxyisoguanosine; 4), and 9-(3-deoxy-β-d-erythro-pentofuranosyl)-2-fluoroadenine (5). Compounds 25 were evaluated for their anti-HIV activity.  相似文献   
5.
13C-NMR spectra of isoechinulins A, B and C, metabolites from Aspergillus ruber, were fully assigned on the basis of chemical shifts and multiplicities and comparison with their analogues. Taking advantage of the symmetrical structure of the diketopiperazine ring, the stereochemistry of the trisubstituted carbon-carbon double bond in a dehydrotryptophyl moiety was determined as Z (cis) by measuring the coupling constants, , in the proton nondecoupled spectrum of isoechinulin B.  相似文献   
6.
For Podospora anserina, several studies of cellulolytic enzymes have been established, but characteristics of amylolytic enzymes are not well understood. When P. anserina grew in starch as carbon source, it accumulated glucose, nigerose, and maltose in the culture supernatant. At the same time, the fungus secreted α-glucosidase (PAG). PAG was purified from the culture supernatant, and was found to convert soluble starch to nigerose and maltose. The recombinant enzyme with C-terminal His-tag (rPAG) was produced with Pichia pastoris. Most rPAG produced under standard conditions lost its affinity for nickel-chelating resin, but the affinity was improved by the use of a buffered medium (pH 8.0) supplemented with casamino acid and a reduction of the cultivation time. rPAG suffered limited proteolysis at the same site as the original PAG. A site-directed mutagenesis study indicated that proteolysis had no effect on enzyme characteristics. A kinetic study indicated that the PAG possessed significant transglycosylation activity.  相似文献   
7.
Enhancing the transglycosylation (TG) activity of glycoside hydrolases does not always result in the production of oligosaccharides with longer chains, because the TG products are often decomposed into shorter oligosaccharides. Here, we investigated the mutation strategies for obtaining chitooligosaccharides with longer chains by means of TG reaction catalyzed by family GH18 chitinase A from Vibrio harveyi (VhChiA). HPLC analysis of the TG products from incubation of chitooligosaccharide substrates, GlcNAcn, with several mutant VhChiAs suggested that mutant W570G (mutation of Trp570 to Gly) and mutant D392N (mutation of Asp392 to Asn) significantly enhanced TG activity, but the TG products were immediately hydrolyzed into shorter GlcNAcn. On the other hand, the TG products obtained from mutants D313A and D313N (mutations of Asp313 to Ala and Asn, respectively) were not further hydrolyzed, leading to the accumulation of oligosaccharides with longer chains. The data obtained from the mutant VhChiAs suggested that mutations of Asp313, the middle aspartic acid residue of the DxDxE catalytic motif, to Ala and Asn are most effective for obtaining chitooligosaccharides with longer chains.  相似文献   
8.
Six α-monoglucosyl derivatives of ginsenoside Rg1 (G-Rg1) were synthesized by transglycosylation reaction of rice seed α-glucosidase in the reaction mixture containing maltose as a glucosyl donor and G-Rg1 as an acceptor. Their chemical structures were identified by spectroscopic analysis, and the effects of reaction time, pH, and glycosyl donors on transglycosylation reaction were investigated. The results showed that rice seed α-glucosidase transfers α-glucosyl group from maltose to G-Rg1 by forming either α-1,3 (α-nigerosyl)-, α-1,4 (α-maltosyl)-, or α-1,6 (α-isomaltosyl)-glucosidic linkages in β-glucose moieties linked at the C6- and C20-position of protopanaxatriol (PPT)-type aglycone. The optimum pH range for the transglycosylation reaction was between 5.0 and 6.0. Rice seed α-glucosidase acted on maltose, soluble starch, and PNP α-D-glucopyranoside as glycosyl donors, but not on glucose, sucrose, or trehalose. These α-monoglucosyl derivatives of G-Rg1 were easily hydrolyzed to G-Rg1 by rat small intestinal and liver α-glucosidase in vitro.  相似文献   
9.
Glycosylation of the conserved asparagine residue in each heavy chain of IgG in the CH2 domain is known as N-glycosylation. It is one of the most common post-translational modifications and important critical quality attributes of monoclonal antibody (mAb) therapeutics. Various studies have demonstrated the effects of the Fc N-glycosylation on safety, Fc effector functions, and pharmacokinetics, both dependent and independent of neonatal Fc receptor (FcRn) pathway. However, separation of various glycoforms to investigate the biological and functional relevance of glycosylation is a major challenge, and existing studies often discuss the overall impact of N-glycans, without considering the individual contributions of each glycoform when evaluating mAbs with highly heterogeneous distributions. In this study, chemoenzymatic glycoengineering incorporating an endo-β-N-acetylglucosaminidase (ENGase) EndoS2 and its mutant with transglycosylation activity was used to generate mAb glycoforms with highly homogeneous and well-defined N-glycans to better understand and precisely evaluate the effect of each N-glycan structure on Fc effector functions and protein stability. We demonstrated that the core fucosylation, non-reducing terminal galactosylation, sialylation, and mannosylation of IgG1 mAb N-glycans impact not only on FcγRIIIa binding, antibody-dependent cell-mediated cytotoxicity, and C1q binding, but also FcRn binding, thermal stability and propensity for protein aggregation.  相似文献   
10.
Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type beta-glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type beta-mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. The oligosaccharide synthesis was carried out in aqueous solution at 95 degrees C at different lactose concentrations and pH values. The results showed enhanced synthetic properties of the CelB mutant enzymes. An exchange of one phenylalanine to tyrosine (F426Y) increased the oligosaccharide yield (45%) compared with the wild-type CelB (40%). Incorporation of a positively charged group in the active site (M424K) increased the pH optimum of transglycosylation reaction of CelB. The double mutant, M424K/F426Y, showed much better transglycosylation properties at low (10-20%) lactose concentrations compared to the wild-type. At a lactose concentration of 10%, the oligosaccharide yield for the mutant was 40% compared to 18% for the wild-type. At optimal reaction conditions, a higher ratio of tetrasaccharides to trisaccharides was obtained with the double mutant (0.42, 10% lactose) compared to the wild-type (0.19, 70% lactose). At a lactose concentration as low as 10%, only trisaccharides were synthesized by CelB wild-type. The beta-mannosidase BmnA from P. furiosus showed both beta-glucosidase and beta-galactosidase activity and in the transglycosylation of lactose the maximal oligosaccharide yield of BmnA was 44%. The oligosaccharide yields obtained in this study are high compared to those reported with other transglycosylating beta-glycosidases in oligosaccharide synthesis from lactose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号