首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1989年   1篇
  1984年   1篇
排序方式: 共有2条查询结果,搜索用时 31 毫秒
1
1.
The formation of ternary complexes, transferrin-anion-In111 has been investigated by means of gamma-gamma coincidence spectrometry of the 172-245 keV rays. The angular correlation between the two gamma-rays emitted in cascade depends on the magnetic and electric fields gradients, consequently the chemical structure of metal holder. Any modification of this structure causes the variation of angular correlation. The study of G22 (infinity) as function of pH (G22(infinity): integrated perturbed angular correlation coefficient) has been performed to turn out the hydrolysis of In111 in aqueous solution, metal complex formation in presence of chelating agents (citric acid and sodium bicarbonate) and the formation of protein-metal complexes. The presence of complexing agents limits the domain of In111 colloid existence and allows fast transfer of ionised indium on the transferrin. Two types of metal-protein interactions has been turn out. The first in the weakly acidic range of pH is characterized by an affinity constant near to this of citric acid. The second lying in neutral and basic range of pH, where the formation rate of transferrin-In111 complex is fast (t less than 500 s). In citrate medium, for pH 6-7,5 the rate of metal transfer on the protein, studied by means of G22 (infinity) = f(t), is function of pH. The binding anion appears as an indispensable element for the formation of protein-metal complexes. The In111 previously chelated by 8-Hydroxyquinoline is fixed by the protein if only exits a binding anion in the solution. This mays bring in the formation of an intermediate active state, indispensable step for the ternary complex formation transferrin-anion-In111.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号