首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2698篇
  免费   417篇
  国内免费   286篇
  2024年   19篇
  2023年   96篇
  2022年   93篇
  2021年   167篇
  2020年   159篇
  2019年   159篇
  2018年   129篇
  2017年   140篇
  2016年   129篇
  2015年   139篇
  2014年   207篇
  2013年   185篇
  2012年   173篇
  2011年   145篇
  2010年   114篇
  2009年   181篇
  2008年   143篇
  2007年   138篇
  2006年   158篇
  2005年   123篇
  2004年   90篇
  2003年   65篇
  2002年   70篇
  2001年   77篇
  2000年   38篇
  1999年   55篇
  1998年   39篇
  1997年   34篇
  1996年   29篇
  1995年   25篇
  1994年   18篇
  1993年   15篇
  1992年   12篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1982年   5篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有3401条查询结果,搜索用时 15 毫秒
1.
The recent Forum contribution by Grime (2006) contrasts the MacArthur/Diamond assembly‐rule approach to studying plant communities with the study of environmental trait gradients. Both are valid and useful. In doing so, Grime declares that the assembly rules model, in which negative interactions between plants act with limiting similarity to cause local trait divergence, is “not supported by empirical study of plant communities”. This is, he says, the agony of community ecology. I show that there is now abundant evidence for assembly rules, and no agony.  相似文献   
2.
Intraspecific trait variation (ITV), based on available genetic diversity, is one of the major means plant populations can respond to environmental variability. The study of functional trait variation and diversity has become popular in ecological research, for example, as a proxy for plant performance influencing fitness. Up to now, it is unclear which aspects of intraspecific functional trait variation (iFDCV) can be attributed to the environment or genetics under natural conditions. Here, we examined 260 individuals from 13 locations of the rare (semi‐)dry calcareous grassland species Trifolium montanum L. in terms of iFDCV, within‐habitat heterogeneity, and genetic diversity. The iFDCV was assessed by measuring functional traits (releasing height, biomass, leaf area, specific leaf area, leaf dry matter content, Fv/Fm, performance index, stomatal pore surface, and stomatal pore area index). Abiotic within‐habitat heterogeneity was derived from altitude, slope exposure, slope, leaf area index, soil depth, and further soil factors. Based on microsatellites, we calculated expected heterozygosity (He) because it best‐explained, among other indices, iFDCV. We performed multiple linear regression models quantifying relationships among iFDCV, abiotic within‐habitat heterogeneity and genetic diversity, and also between separate functional traits and abiotic within‐habitat heterogeneity or genetic diversity. We found that abiotic within‐habitat heterogeneity influenced iFDCV twice as strong compared to genetic diversity. Both aspects together explained 77% of variation in iFDCV ( = .77, F2, 10 = 21.66, p < .001). The majority of functional traits (releasing height, biomass, specific leaf area, leaf dry matter content, Fv/Fm, and performance index) were related to abiotic habitat conditions indicating responses to environmental heterogeneity. In contrast, only morphology‐related functional traits (releasing height, biomass, and leaf area) were related to genetics. Our results suggest that both within‐habitat heterogeneity and genetic diversity affect iFDCV and are thus crucial to consider when aiming to understand or predict changes of plant species performance under changing environmental conditions.  相似文献   
3.
A method was developed to optimize simultaneous selection for a quantitative trait with a known QTL within a male and a female line to maximize crossbred performance from a two-way cross. Strategies to maximize cumulative discounted response in crossbred performance over ten generations were derived by optimizing weights in an index of a QTL and phenotype. Strategies were compared to selection on purebred phenotype. Extra responses were limited for QTL with additive and partial dominance effects, but substantial for QTL with over-dominance, for which optimal QTL selection resulted in differential selection in male and female lines to increase the frequency of heterozygotes and polygenic responses. For over-dominant QTL, maximization of crossbred performance one generation at a time resulted in similar responses as optimization across all generations and simultaneous optimal selection in a male and female line resulted in greater response than optimal selection within a single line without crossbreeding. Results show that strategic use of information on over-dominant QTL can enhance crossbred performance without crossbred testing.  相似文献   
4.
《植物生态学报》2018,42(9):963
全球氮沉降不仅改变土壤氮和磷的有效性, 同时也改变氮磷比例。氮磷供应量、比例及其交互作用可能会影响植物种子性状。该研究在内蒙古草原基于沙培盆栽实验种植灰绿藜(Chenopodium glaucum), 设置3个氮磷供应量水平和3个氮磷比例的正交实验来探究氮磷供应量、比例及其交互作用对灰绿藜种子性状的影响。结果发现氮磷供应量对种子氮浓度、磷浓度和萌发率影响的相对贡献(15%-24%)大于氮磷比例(3%-7%), 而种子大小只受氮磷比例的影响。同时氮磷供应量和比例之间的交互作用显著影响种子氮浓度和磷浓度。同等氮磷比例情况下, 低量养分供应提高种子氮浓度、磷浓度和萌发率。氮磷比例只有在养分匮乏的环境中才会对种子大小和萌发率产生显著影响。总之, 灰绿藜种子不同性状对氮或磷限制的敏感性不同, 同时种子性状也对养分限制表现出适应性和被动响应。  相似文献   
5.
In order to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in chicken, we phenotypically characterize the allometric growths of multiple body components and metabolic traits relative to BWs using joint allometric scaling models and then establish random regression models (RRMs) to fit genetic effects of markers and minor polygenes derived from the pedigree on the allometric scalings. Prior to statistically inferring the QTLs for the allometric scalings by solving the RRMs, the LASSO technique is adopted to rapidly shrink most of marker genetic effects to zero. Computer simulation analysis confirms the reliability and adaptability of the so-called LASSO-RRM mapping method. In the F2 population constructed by multiple families, we formulate two joint allometric scaling models of body compositions and metabolic traits, in which six of nine body compositions are tested as significant, while six of eight metabolic traits are as significant. For body compositions, a total of 14 QTLs, of which 9 dominant, were detected to be associated with the allometric scalings of drumstick, fat, heart, shank, liver and spleen to BWs; while for metabolic traits, a total of 19 QTLs also including 9 dominant be responsible for the allometries of T4, IGFI, IGFII, GLC, INS, IGR to BWs. The detectable QTLs or highly linked markers can be used to regulate relative growths of the body components and metabolic traits to BWs in marker-assisted breeding of chickens.  相似文献   
6.
1. Bergmann's rule states that organisms inhabiting colder environments show an increase in body size or mass in comparison to their conspecifics living in warmer climates. Although originally proposed for homoeothermic vertebrates, this rule was later extended to ectotherms. In social insects, only a few studies have tested this rule and the results were ambiguous. Here, ‘body size’ can be considered at two different levels (the size of the individual workers or the size of the colony). 2. In this study, data from 53 nests collected along altitudinal gradients in the Alps were used to test the hypotheses that the worker body size and colony size of the ant Leptothorax acervorum increase with increasing altitude and therefore follow Bergmann's rule. 3. The results show that the body size of workers but not the colony size increases with altitude. Whether this pattern is driven by starvation resistance or other mechanisms remains to be investigated.  相似文献   
7.
The effect of a segregating economic trait locus (ETL) can be detected with the aid of a linked genetic marker, if specific alleles of each locus are in association among the individuals genotyped for the genetic marker. For dairy cattle this can be achieved by application of the ‘granddaughter design’. If only the sires and their sons are genotyped for the genetic markers, then the allele origin of sons having the same genotypes as their sires cannot be determined. Seven sires and 101 sons were genotyped for five microsatellites. The mean frequency of heterozygous sires was 77%. The mean number of alleles per locus was 8.2. Frequency of informative sons per locus ranged from 60% to 80% with a mean of 72%. With highly polymorphic microsatellites, at least 60% more grandsire families can be included in the analysis, and the number of sons assayed can be reduced by 40%, as compared to diallelic markers.  相似文献   
8.
Seed dispersal by animals is a complex phenomenon, characterized by multiple mechanisms and variable outcomes. Most researchers approach this complexity by analysing context‐dependency in seed dispersal and investigating extrinsic factors that might influence interactions between plants and seed dispersers. Intrinsic traits of seed dispersers provide an alternative way of making sense of the enormous variation in seed fates. I review causes of intraspecific variability in frugivorous and granivorous animals, discuss their effects on seed dispersal, and outline likely consequences for plant populations and communities. Sources of individual variation in seed‐dispersing animals include sexual dimorphism, changes associated with growth and ageing, individual specialization, and animal personalities. Sexual dimorphism of seed‐dispersing animals influences seed fate through diverse mechanisms that range from effects caused by sex‐specific differences in body size, to influences of male versus female cognitive functions. These differences affect the type of seed treatment (e.g. dispersal versus predation), the number of dispersed seeds, distance of seed dispersal, and likelihood that seeds are left in favourable sites for seeds or seedlings. The best‐documented consequences of individual differences associated with growth and ageing involve quantity of dispersed seeds and the quality of seed treatment in the mouth and gut. Individual specialization on different resources affects the number of dispersed plant species, and therefore the connectivity and architecture of seed‐dispersal networks. Animal personalities might play an important role in shaping interactions between plants and dispersers of their seeds, yet their potential in this regard remains overlooked. In general, intraspecific variation in seed‐dispersing animals often influences plants through effects of these individual differences on the movement ecology of the dispersers. Two conditions are necessary for individual variation to exert a strong influence on seed dispersal. First, the individual differences in traits should translate into differences in crucial characteristics of seed dispersal. Second, individual variation is more likely to be important when the proportions of particular types of individuals fluctuate strongly in a population or vary across space; when proportions are static, it is less likely that intraspecific differences will be responsible for changes in the dynamics and outcomes of plant–animal interactions. In conclusion, focusing on variation among foraging animals rather than on species averages might bring new, mechanistic insights to the phenomenon of seed dispersal. While this shift in perspective is unlikely to replace the traditional approach (based on the assumption that all important variation occurs among species), it provides a complementary alternative to decipher the enormous variation observed in animal‐mediated seed dispersal.  相似文献   
9.
A test has been made of the association of heterozygosity with shell breadth in the polymorphic snail Cepaea nemoralis. The material was collected by C. B. Goodhart from a series of paired sites at which individuals reached different adult breadths. Dominant phenotypes, in which a large fraction was heterozygous, had a greater breadth and lower variance than recessive phenotypes regardless of whether the measurement was of shell ground colour, banding or the double recessive vs. the rest. Most of the difference was contributed by samples from the habitat where animals reached the largest size. The result is consistent with existence of heterotic sections of chromosome that include the colour and banding loci, and may help to explain the persistence of the polymorphism.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 49–53.  相似文献   
10.
Summary By making use of pedigree information and information on marker-genotypes of the parent and F-1 individuals crossed to form an F-2 population, it is possible to carry out a linkage analysis between marker loci and loci affecting quantitative traits in a cross between segregating parent populations that are at fixation for alternative alleles at the QTL, but share the same alleles at the marker loci. For two-allele systems, depending on marker allele frequencies in the parent populations, 2–4 times as many F-2 offspring will have to be raised and scored for markers and quantitative traits in order to provide power equivalent to that obtained in a cross between fully inbred lines. Major savings in number of F-2 offspring raised can be achieved by scoring each parent pair for a large number of markers in each chromosomal region and scoring F-1 and F-2 offspring only for those markers for which the parents were homozygous for alternative alleles. For multiple allele systems, particularly when dealing with hypervariable loci, only 10%–20% additional F-2 offspring will have to be raised and scored to provide power equivalent to that obtained in a cross between inbred lines. When a resource population contains novel favorable alleles at quantitative trait loci that are not present (or rare) in a commercial population, analyses of this sort will enable the loci of interest to be identified, mapped and manipulated effectively in breeding programs.Contribution no. 2124-E, 1987 series from The Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号