首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2014年   6篇
  2013年   2篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  1999年   1篇
  1997年   1篇
  1988年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Abstract

This paper describes a systematic investigation on the hemodynamic environment in a patient-specific AAA with tortuous common iliac artery(CIA) and external iliac artery (EIA). 3D reconstructions from CT scans and subsequent computational simulation are carried out. It is found out that the Newtonian and non-Newtonian models have very similar flow field and WSS distribution. More importantly, it is revealed that the torturous CIA maintained its helical flow. It is concluded that the assumption of Newtonian blood is adequate in capturing the intra-aneurysmal hemodynamics. Moreover, it is speculated that the physiological spiral flow protects the twisted CIA from the thrombosis formation.  相似文献   
2.
3.
Mobilities of lipophilic organic solutes in cuticular membranes (CM) isolated from mature leaves of Citrus aurantium L., Citrus grandis L., Hedera helix L., IIex aquifolium L., Ilex paraguariensis St.-Hil., Mains domestica Borkh., Prunus armeniaca L., Primus laurocerasus L., Pyrus communis L., Pyrus pyrifolia (Burm. f.) Nakai, Stephanotis florihunda Brongn. and Strophantus gratus Baill. were measured over a temperature range of 15–78°C. In this range, solute mobilities increased up to 1000-fold, which corresponds to temperature coefficients Q10 of 3 (IAA in P. armeniaca) to 14 (cholesterol in H. helix). For most species, Arrhenius graphs showed good linearity up to 40°C, and up to 78°C for some species, while for others activation energies declined with increasing temperature. However, no distinct phase transitions caused by sudden structural changes in the CM were observed. In three species we examined whether heating to 70°C changed solute mobility irreversibly by comparing Arrhenius graphs for two successive experiments with the same CM. The two graphs were very similar for P. laurocerasus, while mobilities in the second graph were somewhat reduced for C. aurantium and greatly increased (at 25 and 35°C) for H. helix. This indicates rearrangements of at least some wax constituents when heated to high temperatures. The activation energies of diffusion (ED) ranged from 75 to 189 KJ mol?11 depending on species and solute size. Size selectivity and variability between cuticles decreased with increasing temperature, and this is caused by differences in (ED). An excellent correlation between the pre-exponential factor of the Arrhenius equation and ED was observed, which is evidence that organic solutes differing greatly in molecular size (130–349 cm3 mol?1) and cuticle/water partition coefficient (25–108) use similar diffusion paths in the CM of all 12 plant species tested. Diffusion occurs in regions with identical physicochemical properties and differs only in magnitude.  相似文献   
4.
Arterial tortuosity syndrome (ATS, MIM# 208050) is a rare autosomal recessive connective tissue disease, mainly characterized by widespread arterial involvement with elongation, tortuosity, and aneurysms of the large and middle-sized arteries (Callewaert et al., 2008, Hum Mutat 29:150-158). Recently, mutations were identified in the SLC2A10 gene encoding the facilitative glucose transporter GLUT10 (Coucke et al., 2006, Nat Genet 38:452-457). It was hypothesized that loss-of-function of the transporter results in upregulation of the transforming growth factor beta (TGFbeta) signaling pathway (Coucke et al., 2006, Nat Genet 38:452-457). We anticipated that a mouse model would help to gain more insight in the complex pathophysiological mechanism of human ATS. Here, we report that two mouse models, homozygous respectively for G128E and S150F missense substitutions in glut10 do not present any of the vascular, anatomical, or immunohistological abnormalities as encountered in human ATS patients. We conclude that these mouse strains do not phenocopy human ATS and cannot help the further elucidation of pathogenetic mechanisms underlying this disease.  相似文献   
5.
6.
Vascular tortuosity as an indicator of retinal vascular morphological changes can be quantitatively analyzed and used as a biomarker for the early diagnosis of relevant disease such as diabetes. While various methods have been proposed to evaluate retinal vascular tortuosity, the main obstacle limiting their clinical application is the poor consistency compared with the experts’ evaluation. In this research, we proposed to apply a multiple subdivision-based algorithm for the vessel segment vascular tortuosity analysis combining with a learning curve function of vessel curvature inflection point number, emphasizing the human assessment nature focusing not only global but also on local vascular features. Our algorithm achieved high correlation coefficients of 0.931 for arteries and 0.925 for veins compared with clinical grading of extracted retinal vessels. For the prognostic performance against experts’ prediction in retinal fundus images from diabetic patients, the area under the receiver operating characteristic curve reached 0.968, indicating a good consistency with experts’ predication in full retinal vascular network evaluation.  相似文献   
7.
Intraspecific differences in movement behaviour reflect different tactics used by individuals or sexes to favour strategies that maximize fitness. We report movement data collected from n = 23 adult male polar bears with novel ear-attached transmitters in two separate pack ice subpopulations over five breeding seasons. We compared movements with n = 26 concurrently tagged adult females, and analysed velocities, movement tortuosity, range sizes and habitat selection with respect to sex, reproductive status and body mass. There were no differences in 4-day displacements or sea ice habitat selection for sex or population. By contrast, adult females in all years and both populations had significantly more linear movements and significantly larger breeding range sizes than males. We hypothesized that differences were related to encounter rates, and used observed movement metrics to parametrize a simulation model of male–male and male–female encounter. The simulation showed that the more tortuous movement of males leads to significantly longer times to male–male encounter, while having little impact on male–female encounter. By contrast, linear movements of females are consistent with a prioritized search for sparsely distributed prey. These results suggest a possible mechanism for explaining the smaller breeding range sizes of some solitary male carnivores compared to females.  相似文献   
8.
Filamentous fungi are exploited as cell factories in biotechnology for the production of proteins, organic acids, and natural products. Hereby, fungal macromorphologies adopted during submerged cultivations in bioreactors strongly impact the productivity. In particular, fungal pellets are known to limit the diffusivity of oxygen, substrates, and products. To investigate the spatial distribution of substances inside fungal pellets, the diffusive mass transport must be locally resolved. In this study, we present a new approach to obtain the effective diffusivity in a fungal pellet based on its three-dimensional morphology. Freeze-dried Aspergillus niger pellets were studied by X-ray microcomputed tomography, and the results were reconstructed to obtain three-dimensional images. After processing these images, representative cubes of the pellets were subjected to diffusion computations. The effective diffusion factor and the tortuosity of each cube were calculated using the software GeoDict. Afterwards, the effective diffusion factor was correlated with the amount of hyphal material inside the cubes (hyphal fraction). The obtained correlation between the effective diffusion factor and hyphal fraction shows a large deviation from the correlations reported in the literature so far, giving new and more accurate insights. This knowledge can be used for morphological optimization of filamentous pellets to increase the yield of biotechnological processes.  相似文献   
9.
10.
At the edge of a biological invasion, evolutionary processes (spatial sorting, natural selection) often drive increases in dispersal. Although numerous traits influence an individual''s displacement (e.g. speed, stamina), one of the most important is path straightness. A straight (i.e. highly correlated) path strongly enhances overall dispersal rate relative to time and energetic cost. Thus, we predict that, if path straightness has a genetic basis, organisms in the invasion vanguard will exhibit straighter paths than those following behind. Our studies on invasive cane toads (Rhinella marina) in tropical Australia clearly support this prediction. Radio-tracking of field-collected toads at a single site showed that path straightness steadily decreased over the first 10 years post-invasion. Consistent with an evolved (genetic) basis to that behavioural shift, path straightness of toads reared under common garden conditions varied according to the location of their parents'' origin. Offspring produced by toads from the invasion vanguard followed straighter paths than did those produced by parents from long-established populations. At the individual level, offspring exhibited similar path straightness to their parents. The dramatic acceleration of the cane toad invasion through tropical Australia has been driven, in part, by the evolution of a behavioural tendency towards dispersing in a straight line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号