首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   5篇
  国内免费   12篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2020年   5篇
  2019年   9篇
  2018年   1篇
  2017年   5篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   18篇
  2012年   3篇
  2011年   6篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   10篇
  2006年   15篇
  2005年   7篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   11篇
  2000年   3篇
  1999年   3篇
  1998年   6篇
  1997年   7篇
  1996年   7篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   7篇
  1988年   9篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   2篇
排序方式: 共有268条查询结果,搜索用时 15 毫秒
1.
Abstract The growth, biomass δ13C values, and ability to accumulate titratable acidity at night were compared in eight environmental treatments for Cremnophila linguifolia, Sedum greggii, and their F1 hybrid. In the phytotron, differences in treatment daylength, day/night temperature and water availability were all found to have effects on total plant dry weight, nocturnal accumulation of titratable acidity and biomass δ13C value of at least some of the genotypes. However, there were differences between the genotypes both in the magnitude and direction of response of the phenotypic properties to the treatment variables. The phytotron δ13C values ranged from -12.9 to -19.2‰ for C. linguifolia, from -22.2 to -33.4‰ for S. greggii, and from -19.2 to -24.9‰ for the hybrid. After with-holding water for 76 h both C. linguifolia and the hybrid had midday Ψleaf values of -0.23 MPa; however, S. greggii had a value of -1.05 MPa. In contrast to past observations of other species, the daily watered plants of C. linguifolia had less negative δ13C values than did the plants watered only weekly.  相似文献   
2.
Day/night changes in turgor pressure (P) and titratable acidity content were investigated in the (Crassulacean-acid-metabolism (CAM) plant Kalanchoe daigremontiana. Measurements of P were made on individual mesophyll cells of intact attached leaves using the pressure-probe technique. Under conditions of high relative humidity, when transpiration rates were minimal, changes in P correlated well with changes in the level of titratable acidity. During the standard 12 h light/12 h dark cycle, maximum turgor pressure (0.15 MPa) occurred at the end of the dark period when the level of titratable acidity was highest (about 300 eq H+·g-1 fresh weight). A close relationship between P and titratable acidity was also seen in leaves exposed to perturbations of the standard light/dark cycle. (The dark period was either prolonged, or else only CO2-free air was supplied in this period). In plants deprived of irrigation for five weeks, diurnal changes in titratable acidity of the leaves were reduced (H=160 eq H+·g-1 fresh weight) and P increased from essentially zero at the end of the light period to 0.02 MPa at the end of the dark period. Following more severe water stress (experiments were made on leaves which had been detached for five weeks), P was zero throughout day and night, yet small diurnal changes in titratable acidity were still measured. These findings are discussed in relation to a hypothesis by Lüttge et al. 1975 (Plant Physiol. 56,613-616) for the role of P in the regulation of acidification/de-acidification cycles of plants exhibiting CAM.Abbreviations CAM crassulacean acid metabolism - FW fresh weight - P turgor pressure  相似文献   
3.
Two experiments were carried out to evaluate the effect of acidity on bean-Rhizobium competition for nodule sites. SevenPhaseolus vulgaris host cultivars differing in acid-pH tolerance were grown in sand culture, and irrigated using a sub-irrigation system and nutrient solutions of pH 4.5, 5.0, 5.5, and 6.0. A mixed inoculant of two antibiotically markedRhizobium leguminosarum bvphaseoli strains CIAT899 (acid-tolerant) and CIAT632 (acid-sensitive) was used. The acid-tolerant CIAT899 dominated CIAT632 in nodule occupancy across all cultivars and pH treatments. Although several of the varieties had previously been identified as PH-tolerant, and these cultivars performed better than those reported to be acid sensitive, all showed a marked increase in nodulation and plant development when the pH was raised from 4.5 to 6.0. The second experiment using a modified Leonard jar system varied the inoculation ratio between CIAT899 and UMR1116 (acid-sensitive, inefficient in N2-fixation) and contrasted nodulation response for the bean varieties Preto 143 (pH-tolerant) and Negro Argel (pH-sensitive) at 3 pH treatments (4.5, 5.5, 6.5). There was a significant effect of host cultivar, ratio of inoculation, and pH on the percentage of nodule occupancy by each strain. At low pH CIAT899 had higher nodule occupancy than UM1116 in the variety Negro Argel but had the same percentage of nodulation when the variety was Preto 143. Increasing the cell concentration of UMR1116 produced more inefficient nodules at all treatment combinations and reduced plant growth for both cultivars used.  相似文献   
4.
The effects of soil acidity on the growth and N2-fixing activity of white clover in seven acid topsoils and subsoils of New Zealand were investigated using a glasshouse experiment.The application of phosphate (Ca(H2PO4)2) to the soils resulted in very large increases in white clover growth on all soils. The application of phosphate, as well as increasing P supply, also decreased 0.02M CaCl2-extractable Al levels, but had little effect on exchangeable Al levels.Where adequate phosphate was applied, increasing rates of lime (CaCO3) resulted in increased plant growth on most soils. N2[C2H2]-fixing activity was increased by the first level of lime for one soil, but generally remained approximately constant or declined slightly at higher rates of lime. Up to the point of maximum yield, white clover top weight was more highly correlated with 0.02M CaCl2-extractable soil Al than with exchangeable Al or pH. At pH values greater than 5.5, plant yield declined on some soils, apparently because of Zn deficiency. The data suggest that white clover is unlikely to be affected by Al toxicity at 0.02M CaCl2-extractable Al levels of less than about 3.3 g g–1. However, there were differences between soils in apparent plant tolerance to 0.02M CaCl2-extractable Al, which appeared to be caused by differing C levels in the 0.02M CaCl2 extracts.  相似文献   
5.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   
6.
Loss of Watson-Crick protons following DNA base alkylation has been proposed as a key event which confers mutation-inducing properties on to alkylated DNA bases. In this theoretical study, the promutagenic O6-guanine and O4-thymine sites are clearly distinguished from the nonmutagenic N7-guanine site on the basis of calculated values of mechanistic indicators for Watson-Crick proton acidity following alkylation at these respective sites. The degree of acidity predicted for these protons for each type of alkylated base accords well with the presence or absence of mutagenicity observed experimentally in each case.  相似文献   
7.
Mizuno  N.  Yoshida  H. 《Plant and Soil》1993,155(1):505-508
The severity of the incidence of the fungal disease, potato scab, varies with different soil groups at the same soil pH. At a soil pH of 5.3, potato scab is easily controlled in soils of western Hokkaido (soil group A) by simply decreasing soil pH, but in soils from eastern Hokkaido (soil group B) it is not so easily controlled. The difference appears to be due to higher levels and exchangeable aluminium in Group A.Addition of sufficient aluminium or ferrous sulfate to a group B soil decreased the incidence of potato scab in a field experiment. Higher levels of aluminium sulfate depressed crop production. It is concluded that aluminium ions control the incidence of potato scab in acid soils. It is suggested that, in soils with low exchange acidity Y1, potato scab can be controlled by adding sufficient aluminium to increase their exchange acidity Y1 to above 7–8.  相似文献   
8.
Ring  S. M.  Fisher  R. P.  Poile  G. J.  Helyar  K. R.  Conyers  M. K.  Morris  S. G. 《Plant and Soil》1993,155(1):521-524
The major phytotoxins in acid soils are aluminium and manganese. Tolerances to Al and to excessive Mn are independently inherited and Al and Mn solubilities in soils vary. In this work, the response of pasture grasses and legumes to soil acidity was studied on three soils with different Al and Mn concentrations. One provides moderate concentrations of Al with little Mn; one provides high concentrations of both Al and Mn and another provides a very high concentration of Mn at relatively low concentrations of Al. The response of a plant cultivar to changes in the soil acidity induced by lime or acid additions reflects the degree of Al and/or Mn stress provided by a particular soil, and the ability of the cultivar to tolerate those stresses. Examples are given of the way cultivars with different tolerances to Al and Mn toxicity respond to changes in acidity on the soils with different Al and Mn solubility characteristics. The utility of this screening technique to define the tolerance of cultivars to acidity on classically different soils is highlighted.  相似文献   
9.
The effects of highly and moderately acid soils on total biomass, biomass partitioning, fine root characteristics and nutritional status of beech seedlings (Fagus sylvatica L.) were studied in a growth chamber experiment. In Haplic Arenosols seedlings grew slowly but equally well without damage symptoms in a highly acid and a moderately acid soil horizon. The moderately acid Ah+Bw-horizon of a Eutric Cambisol was favourable to seedling growth. The fine root development was reduced in the highly acid A+Bw-horizon of a Dystric Cambisol and in the Ah+E-horizon of a Haplic Podzol, the latter of which also caused increased mortality. Seedling growth in the B2-horizon of the Haplic Podzol was vigorous, in spite of a higher level of extractable Al and lower base saturation as compared with the Ah+E-horizon. These results are interpreted in relation to soil acidity, soil Al and nutritional status of the seedlings. We conclude that neither Al-toxicity nor nutrient deficiency cause the damage symptoms observed in the Ah+E-horizon of a Haplic Podzol and the fine root reduction in the A+Bw-horizon of a Dystric Cambisol. The damage symptoms of the PZhA treatment seems to be more the result of H-toxicity or H-related factors other than nutrient shortage or Al-toxicity. Other pH-related toxic factors are discussed.  相似文献   
10.
This work was designed to determine the role of the acidity and aluminium stress in the selection of partners in the Acacia symbioses with relevance to the persistence of the microsymbiont Bradyrhizobium in the soil and the growth and nodulation of the host plant respectively. Fifteen strains of Bradyrhizobium from Acacia mangium and Faidherbia albida formed a very homogenous acid tolerant group as indicated by their ability to grow better in a medium at pH 4.5 than in a medium at pH 6.8. By contrast, a growth experiment using an acid liquid media (pH 4.5), containing different concentrations of aluminium successfully identified strains sensitive to aluminium toxicity and those able to grow even in the presence of 100 M AlCl3.Our results suggest that high amounts of aluminium in the soil rather than acidity (pH 4.5) were a major soil factor for selection of Bradyrhizobium strains capable of establishing a permanently high population under natural conditions.Unlike the behaviour of the microsymbiont, growth and nodulation of Acacia mangium and Faidherbia albida were not affected by aluminium, even at 100 M, but they might be significantly affected by medium acidity (pH 4.5) depending on plant provenances. It is therefore suggested that ability of the host plant to tolerate acidity stress should be taken into account first when screening effective Acacia-Bradyrhizobium combinations for use in afforestation trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号