首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2013年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
The aim of this work was to assess the capacities of some ·NO-donors to release ·NO, and consequently NOx in aerobic medium, or to give peroxynitrite. The method was based on the differential reactivity of serotonin (5-HT) with either NOx or peroxynitrite, leading in phosphate-buffered solutions to 4-nitroso- and 4-nitro-5-HT formation, respectively. Yields and formation rates of 5-HT derivatives with ·NO-donor were compared to those obtained with authentic ·NO or peroxynitrite in similar conditions. Aside from the capacity of diazenium diolates (SPER/NO and DEA/NO) to release ·NO spontaneously, converting 5-HT exclusively to 4-nitroso-5-HT, all other ·NO donors must undergo redox reactions to produce ·NO. S-nitrosoglutathione (GSNO) and sodium nitroprus-side (SNP) modified 5-HT only in the presence of Cu2+, GSNO yielding 6 times more 4-nitroso-5-HT than SNP. Furthermore, in the presence of Cu+, the yield of ·NO-release from GSNO was 45%. The molsidomine metabolite (SIN-1), which was presumed to release both ·NO and O2/·- at pH 7.4, reacted with 5-HT differently, depending on the presence of reductant or oxidant. Under aerobic conditions, SIN-1 acted predominantly as a 5-HT oxidant and also as a poor ·NO and peroxynitrite donor (15% yield of ·NO-release and 14 % yield of peroxynitrite formation). The strong oxidant Cu2+, even in the presence of air oxygen, accelerated oxidation and increased ·NO release from SIN-1 up to 86%. Only a small part of SIN-1 gave simultaneously ·NO and O2/·- able to link together to give peroxynitrite, but other oxidants could enhance ·NO release from SIN-1.  相似文献   
2.
The mechanism of thionitrite decomposition, both in vivo and in vitro, remains unclear. Thionitrite stability is highly variable; it is a complex function of thionitrite structure and environmental condition. Several recent advances clarify the role of unimolecular homlytic decomposition, metal-catalyzed reductive decomposition and higher-order enzymatic and non-enzymatic processes to the overall observed stability of thionitrites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号