首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2017年   1篇
  2007年   1篇
  1991年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The importance of the early steps of de novo fatty-acid biosynthesis is discussed in terms of rate-limiting enzymic reactions with respect to their inhibition by xenobiotics. The inhibitory spectra of allicin as an inhibitor of the acetyl-CoA-synthase, two classes of graminicides (cyclohexane-1,3-diones and aryloxyphenoxypropionic acids) as inhibitors of acetyl-CoA-carboxylase, and the two antibiotics cerulenin and thiolactomycin, which affect the condensing step in fatty-acid biosynthesis, are compared.  相似文献   
2.
Modern chemotherapy has significantly improved patient outcomes against drug-sensitive tuberculosis. However, the rapid emergence of drug-resistant tuberculosis, together with the bacterium’s ability to persist and remain latent present a major public health challenge. To overcome this problem, research into novel anti-tuberculosis targets and drug candidates is thus of paramount importance. This review article provides an overview of tuberculosis highlighting the recent advances and tools that are employed in the field of anti-tuberculosis drug discovery. The predominant focus is on anti-tuberculosis agents that are currently in the pipeline, i.e. clinical trials.  相似文献   
3.
Mycolic acids are long chain alpha-alkyl branched, beta-hydroxy fatty acids that represent a characteristic component of the Mycobacterium tuberculosis cell wall. Through their covalent attachment to peptidoglycan via an arabinogalactan polysaccharide, they provide the basis for an essential outer envelope membrane. Mycobacteria possess two fatty acid synthases (FAS); FAS-I carries out de novo synthesis of fatty acids while FAS-II is considered to elongate medium chain length fatty acyl primers to provide long chain (C(56)) precursors of mycolic acids. Here we report the crystal structure of Mycobacterium tuberculosis beta-ketoacyl acyl carrier protein synthase (ACP) II mtKasB, a mycobacterial elongation condensing enzyme involved in FAS-II. This enzyme, along with the M. tuberculosis beta-ketoacyl ACP synthase I mtKasA, catalyzes the Claisen-type condensation reaction responsible for fatty acyl elongation in FAS-II and are potential targets for development of novel anti-tubercular drugs. The crystal structure refined to 2.4 A resolution revealed that, like other KAS-II enzymes, mtKasB adopts a thiolase fold but contains unique structural features in the capping region that may be crucial to its preference for longer fatty acyl chains than its counterparts from other bacteria. Modeling of mtKasA using the mtKasB structure as a template predicts the overall structures to be almost identical, but a larger entrance to the active site tunnel is envisaged that might contribute to the greater sensitivity of mtKasA to the inhibitor thiolactomycin (TLM). Modeling of TLM binding in mtKasB shows that the drug fits the active site poorly and results of enzyme inhibition assays using TLM analogues are wholly consistent with our structural observations. Consequently, the structure described here further highlights the potential of TLM as an anti-tubercular lead compound and will aid further exploration of the TLM scaffold towards the design of novel compounds, which inhibit mycobacterial KAS enzymes more effectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号