首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   306篇
  免费   31篇
  国内免费   4篇
  2024年   1篇
  2023年   5篇
  2022年   5篇
  2021年   7篇
  2020年   11篇
  2019年   9篇
  2018年   13篇
  2017年   6篇
  2016年   12篇
  2015年   15篇
  2014年   7篇
  2013年   33篇
  2012年   3篇
  2011年   14篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   11篇
  2006年   15篇
  2005年   10篇
  2004年   7篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   4篇
  1993年   3篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   7篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1979年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有341条查询结果,搜索用时 15 毫秒
1.
Compelling evidence suggests that low-density lipoprotein (LDL) is oxidized by cells within the arterial intima and that, once oxidized, it is profoundly atherogenic. The precise mechanism(s) by which cells promote the oxidation of LDL in vivo are not known; in vitro, however, oxidation of LDL can be enhanced by a number of differing mechanisms, including reaction with free and protein-bound metal ions, thiols, reactive oxygen species, lipoxygenase, myeloperoxidase and peroxynitrite. This review is concerned with the mechanisms by which cells enhance the oxidation of LDL in the presence of transition metals; in particular, the regulation, pro- and anti-oxidant consequences, and mechanism of action of cellular thiol production are examined, and contrasted with thiol-independent oxidation of LDL in the presence of transition metals.  相似文献   
2.
Reactive oxygen species (ROS) are involved in the pathophysiology of fulminant hepatic failure. Therefore, we developed polyethylene glycol-conjugated bovine serum albumin with multiple reduced thiols (PEG-BSA-SH) for the treatment of fulminant hepatic failure. As a long-circulating ROS scavenger, PEG-BSA-SH effectively scavenged highly reactive oxygen species and hydrogen peroxide in buffer solution. PEG-BSA-SH showed a long circulation time in the plasma after intravenous injection into mice. Fulminant hepatic failure was induced by intraperitoneal injection of lipopolysaccharide and d-galactosamine (LPS/d-GalN) into mice. The LPS/d-GalN-induced elevation of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels was significantly inhibited by a bolus intravenous injection of PEG-BSA-SH. Furthermore, the changes in hepatic lipid peroxide and hepatic blood flow were effectively suppressed by PEG-BSA-SH. In contrast, l-cysteine, glutathione, and dithiothreitol, three traditional reduced thiols, had no statistically significant effects on the serum levels of ALT or AST. These findings indicate that PEG-BSA-SH is a promising ROS scavenger and useful in the treatment of fulminant hepatic failure.  相似文献   
3.
The monofunctional thiol reagents N-ethylmaleimide (NEM) and methyl methanethiosulfonate (MMTS) stimulate ouabain resistant (OR) electroneutral K:Cl cotransport in LK sheep red blood cells at low, but not at high concentrations. Diamide (DM), on the other hand, only stimulates OR K:Cl flux (Lauf, P.K., J. Memb. Biol. 101: 179–188, 1988). The DM stimulated K:Cl cotransport was decreased toward the control value prior to DM stimulation when NEM or MMTS were added, subsequently. The inhibitory effect was dependent on the compound's concentration and exposure time and, in the case of MMTS, was reversed upon addition of dithiothreitol (DTT). The inhibition was more prominent when NEM treatment was performed at pH 8.0 and disappeared at pH 6.0. In contrast the NEM stimulatory effect was most effective when the pH of NEM treatment was 6.0 (Bauer, J. & Lauf, P.K., J. Memb. Biol. 73: 257–261, 1983). The results suggest the existence of additional, however, inhibitory thiol groups in the already thiol-activated K:Cl cotransporter, with a different pKa value and a lower affinity for NEM or MMTS as compared to the stimulatory thiol groups. Like the activating thiols, the inhibitory sulfhydryls appeared to be inaccessible to non-penetrating thiol reagents and hence, must be located deeper within the red cell membrane.  相似文献   
4.
Glutathione synthetase activity (EC 6.3.2.3) was analysed in ammonium sulfate precipitates of extracts l'rom photohetevotrophically grown cells of Nicotiana tabactm L. cv. Samsun by determination of glutathione as its monobromobimane derivative. Maximal enzyme activity was obtained at pH 8.0–9.0 in Tris-HCl and CHES as buffer systems. The enzyme showed an absolute requirement for Mg2+ and was slightly stimulated by K+. When Mg2+ was replaced by Mn2+ less synthetase activity was observed, and above 30 m M Mn2+ no activity was found. The enzyme was specific for glycine (KM = 0.308 m M ). No product formation was observed with ß -alanine and γ y-aminobutyrate using substrate conccntrations of 10 m M . The apparent KM values for γ -glutamylcysteine and γ -glutamyl- l -α-aminobutyrate were, respectively, 0.022 and 0.033 m M . By chloroplast Isolation ca 24% of the total glutathione synthetase activity of the cells could be shown to be localized in the chloroplasts, the rest being attributed to the cytoplasm of the tobacco cells.  相似文献   
5.
Tricyclohexylhydroxytin, commonly known as Plictran® inhibited Na+, K+ -ATPase activity of rat brain synaptosomes in a concentration-dependent manner with median inhibitory concentration (IC-50) of 2 μM. Both K+ -stimulated para-nitrophenylphosphatase and [3-H]-ouabain binding to synaptosomes were also inhibited by Plictran with IC-50 values of 11 and 30 μM, respectively. Altered pH and Na+, K+ -ATPase activity curves demonstrated comparable inhibition in buffered neutral and alkaline pH ranges, and no inhibition was observed in acidic pH. The inhibition of Na+, K+ -ATPase was independent of temperature. Kinetic studies of substrate (ATP) activation of Na+, K+ -ATPase indicated uncompetitive inhibition. Results also showed noncompetitive inhibition for p-nitrophenylphosphate and uncompetitive inhibition for K+ activations of p-nitrophenylphosphatase. Preincubation of synaptosomes with dithiothreitol, a sulfhydryl (SH) agent, resulted in the complete protection of Plictran inhibition of Na+, K+ -ATPase, K+ -para-nitrophenylphosphatase, and [3-H]-ouabain binding. The protection was specific and concentration dependent since cysteine and glutathione did not afford protection. These results indicate that Plictran inhibited Na+, K+ -ATPase by interacting with dephosphorylation of the enzyme-phosphoryl complex and exerted a similar effect to that of SH-blocking agents.  相似文献   
6.
7.
Cathepsin B (EC 3.4.22.1) was purified from buffalo liver. The enzyme activity against-benzoyl-dl-arginine-naphthylamme (BANA) was substantially reduced by heat (above 37C) and by nondenaturing concentrations of urea (3 M) and guanidine hydrochloride (1 M). Cathepsin B was significantly activated by 1.5 mM EDTA alone. The activation of the enzyme was further enhanced in the presence of thiol compounds, e.g., cysteine thioglycolic acid, 2,3-dimercapto-1-propenol, and dithioerythritol (DTE). The minimum concentration of the thiol compound required for optimal activation of cathepsin B was found to be lowest (0.2 mM) for DTE. The BANA hydrolyzing activity of cathepsin B was substantially reduced by Cu2+ (20–200M) and Ca2+ (30–250 mM) as well as by thiol blocking reagents, e.g., iodoacetate, 5,5-dithiobis(2-nitro-benzoic acid) (DTNB), andp-hydroxymercuribenzoate (pHMB). The enzyme activity was completely abolished when the molar ratio of the reagent: cathepsin B was close to 1. The number of free sulfhydryl groups in cathepsin B was determined to be 2 by titration against DTNB and pHMB. Modification of one free thiol group of cathepsin B resulted in complete loss of BANA hydrolyzing activity.  相似文献   
8.
The specificity of -methionine-γ-lyase with respect to the stereochemical structure of the thiol substrate in the γ-substitution reaction has been demonstrated. Cells of Citrobacter intermedius containing -methionine-γ-lyase catalyze the exchange reactions between -methionine and 2-propylthiol or 2-butylthiol which leads to the formation of -2-propylhomocysteine and -2-butylhomocysteine, respectively. The yields of these products are comparable to the yield of -butylhomocysteine in the reaction of normal butylthiol with -methionine, thus 2-propylthiol and 2-butylthiol are effective substrates of -methionine-γ-lyase. On the other hand in the reaction of 3-pentylthiol, only traces of the expected product, -3-pentylhomocysteine, were formed and in the case of 2-methyl-2-butylthiol, the expected product of γ-substitution, -2-methyl-2-butylhomocysteine, was not formed at all. In the reaction with racemic 2-butylthiol, only one diastereomer of -2-butylhomocysteine was obtained. The unreacted 2-butylthiol isolated after the reaction catalyzed by partially purified preparation of -methionine-γ-lyase was enriched with (R)-enantiomer which indicated the preferential reaction of the (S)-enantiomer.  相似文献   
9.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
10.
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号