首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2008年   1篇
  2005年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In alkaline media the thiamine cyclic form is converted into a thiol form (pK(a) 9.2) with an opened thiazole ring. The thiamine thiol form releases nitric oxide from S-nitrosoglutathione (GSNO). Thiamine disulfide, mixed thiamine disulfide with glutathione, and nitric oxide are produced in the reaction. Free glutathione was recorded in small amounts. The concentration of formed nitric oxide agreed well with the concentration of degraded GSNO. The concentration of released nitric oxide was determined under anaerobic conditions spectrophotometrically by production of nitrosohemoglobin. In air, the release of nitric oxide was recorded by the production of nitrite or the oxidation of oxyhemoglobin to methemoglobin. The concentration of the thiol form in the body under physiological pH values (7.2-7.4) did not exceed 1.5-2.0%. We believe that due to the exchange reactions between the thiamine thiol form and S-nitrosocysteine protein residues, nitric oxide can be released and mixed thiamine-protein disulfides are formed. The mixed thiamine disulfides (including thiamine ester disulfides) as well as the thiamine disulfide form are quite easily reduced by low molecular weight thiols to form the thiamine cyclic form with a closed thiazole ring. A possible role of the thiamine thiol form in releasing deposited nitric oxide from low-molecular-weight S-nitrosothiols and protein S-nitrosothiols and in regulation of blood flow in the vascular bed is discussed.  相似文献   
2.
Effects of thiamine and its derivatives on inhibition of dityrosine formation were studied in reactions catalyzed by oxoferryl forms of hemoglobin. At high thiamine concentrations, a complete inhibition of dityrosine formation was observed due to interaction of tyrosyl radicals with thiamine tricyclic and thiol forms. In neutral and alkaline media, tyrosyl radicals oxidized thiamine to thiochrome, oxodihydrothiochrome, and thiamine disulfide. In the absence of tyrosine, oxoferryl forms of hemoglobin manifested peroxidase activity towards thiamine and its phosphate esters by inducing their oxidation to disulfide compounds, thiochrome, oxodihydrothiochrome, and their phosphate esters, respectively, in neutral media. Thiamine and its phosphate esters were oxidized by both oxoferryl forms of hemoglobin, viz., +*Hb(IV=O) (compound I with an additional radical on the globin) and Hb(IV=O) (compound II). Putative mechanisms of thiamine conversions under oxidative stress and the protective role of hydrophobic thiamine metabolites are discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号