首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93篇
  免费   11篇
  2022年   1篇
  2021年   4篇
  2020年   5篇
  2019年   6篇
  2018年   3篇
  2017年   10篇
  2016年   2篇
  2015年   6篇
  2014年   6篇
  2013年   23篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   11篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1997年   1篇
排序方式: 共有104条查询结果,搜索用时 31 毫秒
1.
Centrosaurine ceratopsians are characterized by well developed nasal horncores or bosses, relatively abbreviated supraorbital horncores or bosses, and adorned parietosquamosal frills. Recent study of several paucispecific (low diversity) bonebed assemblages in Alberta and Montana has contributed greatly to our understanding of ontogenetic and taxonomic variation in the skulls of centrosaurines. Relative age determination of centrosaurines is now possible through examination of ontogenetic change in several characters, including the surface bone morphology of specific skeletal elements. The within-group taxonomy of centrosaurines is based almost entirely on characters of the skull roof, relating particularly to horns and frills. Juvenile and sub-adult centrosaurines are characterized by relatively simple, unadorned skulls compared to their adult counterparts. As in numerous living taxa, the cranial ornaments of centrosaurines developed late in ontogeny, as individuals approached or attained adult size. An important implication arising directly from this study is that juvenile and sub-adult centrosaurines are difficult to distinguish taxonomically at the specific level. Two monospecific genera represented only by immature materials, Brachyceratops montanensis and Monoclonius crassus , cannot be defended and should be considered nomina dubia . The late ontogenetic development and diverse taxonomic variation of horn and frill morphologies support the contention diat these structures are best interpreted as reproductive characters employed in mate competition.  相似文献   
2.
Since 1858, when Hitchcock first recorded dinosaur tail traces from the Jurassic of Massachusetts, USA, a number of dinosaur tail traces have been reported. Although considered rare, at least 38 records of dinosaur tail traces have previously been reported in the literature. These occurrences are herein reviewed in order to understand their geographic and stratigraphic distribution, types of tail trace makers, and characteristics of dinosaur tail traces. Several terms for dinosaur tail traces have been employed and they are divided into tail impressions (TIs) for resting traces, and tail drag impressions (TDIs) for locomotion traces. Possible criteria for distinguishing, measuring and comparing TIs and TDIs are suggested. In addition, herringbone structures, one of the characteristic features of tail traces associated with ornithopod and theropod tracks, are discussed. Estimated speeds of tail trace makers are shown to be rather low. Finally, the abundance of tail traces associated with bipedal, rather than quadrupedal, dinosaurs is considered a reflection of behavior.  相似文献   
3.
The Stegosauria represents an iconic group of ornithischian dinosaurs, with a fossil record spanning the Middle Jurassic to the Late Cretaceous. In this contribution I present the first detailed analysis of the relationship between disparity and diversity through the evolutionary history of the group. The analysis has been performed on a recently published cladistic dataset, allowing the separate study of the signals deriving from discrete characters and from continuous morphometric characters. Whereas the disparity as sum of variance is decoupled with respect to diversity, the sum of ranges provides a signal fairly consistent with the trend in the number of taxa. Both sub-data sets show that evolution of stegosaurs can be considered essentially as symmetrical, i.e. the maximum exploration of the possible morphospace takes place about half way through the history of the group, with subsequent significant decline until extinction in the Upper Cretaceous. An interesting result is a decoupling of the tempo and mode of evolution of the cranium and postcranium in stegosaurs. Specifically, the evolutionary radiation with maximum saturation of morphospace is anticipated in the cranial skeleton, with maximum peak in the Oxfordian; in contrast, the postcranium explores the largest number of morphotypes subsequently during the Kimmeridgian.  相似文献   
4.
An isolated, large recurved and finely serrated tooth found associated with the prosauropodEuskelosaurus from the Late Triassic part of the Elliot Formation is described here. It is compared to the Triassic thecodonts and carnivorous dinosaurs and its possible affinity is discussed. The tooth possibly belongs to a basal theropod and shows some features similar to the allosauroids. This tooth is of significance, as dinosaur remains except for some footprints and trackways, are poorly known in the Late Triassic horizons of southern Africa.  相似文献   
5.
Alleged primitive feathers or protofeathers in the theropod dinosaur Sinosauropteryx have potentially profound implications concerning feather morphogenesis, evolution offlight, dinosaur physiology and perhaps even the origin of birds, yet their existence has never been adequately documented. We report on a new specimen of Sinosauropteryx which shows that the integumental structures proposed as protofeathers are the remains of structural fibres that provide toughness. The preservation in the proximal tail area reveals an architecture of closely associated bands offibres parallel to the tail's long axis, which originate from the skin. In adjacent more exposed areas, the fibres are short, fragmented and disorganized. Fibres preserved dorsal to the neck and back and in the distal part of the tail are the remains of a stiffening system of a frill, peripheral to the body and extending from the head to the tip of the tail. These findings are confirmed in the holotype Sinosauropteryx and NIGP 127587. The fibres show a striking similarity to the structure and levels of organization of dermal collagen. The proposal that these fibres are protofeathers is dismissed.  相似文献   
6.
Over the course of the last two decades, the understanding of the early evolution of feathers in nonavian dinosaurs has been revolutionized. It is now recognized that early feathers had a simple form comparable in general structure to the hairs of mammals. Insight into the prevalence of simple feathers throughout the dinosaur family tree has gradually arisen in tandem with the growing evidence for endothermic dinosaur metabolisms. This has led to the generally accepted opinion that the early feather coats of dinosaurs functioned as thermo insulation. However, thermo insulation is often erroneously stated to be a likely functional explanation for the origin of feathers. The problem with this explanation is that, like mammalian hair, simple feathers could serve as insulation only when present in sufficiently high concentrations. The theory therefore necessitates the origination of feathers en masse. We advocate for a novel origin theory of feathers as bristles. Bristles are facial feathers common among modern birds that function like mammalian tactile whiskers, and are frequently simple and hair‐like in form. Bristles serve their role in low concentrations, and therefore offer a feasible first stage in feather evolution.  相似文献   
7.
Recently discovered evidence of tracks in the continental beds of the Late Cretaceous Tremp Formation in the southern Pyrenees (NE Iberian Peninsula) has been identified as scratch marks made by buoyant crocodiles. The tracks are preserved in two distinct environments and substrates (marly limestones originating in a littoral mud flat and fine‐grained sandstones deposited in fluvial settings). Most of the crocodylian traces are ascribed to ichnogenus Characichnos, whereas a single plantigrade pes track is assigned to ichnogenus cf. Crocodylopodus. The crocodylian swim traces (Characichnos ichnofacies) found in the early and late Maastrichtian co‐occur with Brontopodus ichnofacies attributable to terrestrial tetrapods (titanosaur sauropods, cf. Brontopodus ichnogenus; and hadrosaurid ornithopods, Hadrosauropodus ichnogenus). Analysis of the tracks allows the interpretation of palaeoenvironmental settings and track production. Thus, in lagoonal environments, swim tracks of crocodylians were produced during the rise of the water level in successive tide cycles; in fluvial settings, the swim traces of crocodylians were produced within the channel at the low‐water stage. To date, there are no reports of Late Cretaceous crocodylian tracks in Europe, and the studied evidence represents the first and youngest track record of the group in the latest part of the Cretaceous (C29r) in this continent and probably in the world.  相似文献   
8.
Cope's rule is the tendency for body size to increase over time along a lineage. A set of 65 phylogenetically independent comparisons, between earlier and later genera, show that Cope's rule applied in dinosaurs: later genera were on average about 25% longer than the related earlier genera to which they were compared. The tendency for size to increase was not restricted to a particular clade within the group, nor to a particular time within its history. Small lineages were more likely to increase in size, and large lineages more likely to decrease: this pattern may indicate an intermediate optimum body size, but can also be explained as an artefact of data error. The rate of size increase estimated from the phylogenetic comparisons is significantly higher than the rate seen across the fauna as a whole. This difference could indicate that within-lineage selection for larger size was opposed by clade selection favouring smaller size, but data limitations mean that alternative explanations (which we discuss) cannot be excluded. We discuss ways of unlocking the full potential usefulness of phylogenies for studying the dynamics of evolutionary trends.  相似文献   
9.
Allosaurus is one of the most common Mesozoic theropod dinosaurs. We present a histological analysis to assess its growth strategy and ontogenetic limb bone scaling. Based on an ontogenetic series of humeral, ulnar, femoral, and tibial sections of fibrolamellar bone, we estimate the ages of the largest individuals in the sample to be between 13-19 years. Growth curve reconstruction suggests that maximum growth occurred at 15 years, when body mass increased 148 kg/year. Based on larger bones of Allosaurus, we estimate an upper age limit of between 22-28 years of age, which is similar to preliminary data for other large theropods. Both Model I and Model II regression analyses suggest that relative to the length of the femur, the lengths of the humerus, ulna, and tibia increase in length more slowly than isometry predicts. That pattern of limb scaling in Allosaurus is similar to those in other large theropods such as the tyrannosaurids. Phylogenetic optimization suggests that large theropods independently evolved reduced humeral, ulnar, and tibial lengths by a phyletic reduction in longitudinal growth relative to the femur.  相似文献   
10.
Lloyd GT 《Biology letters》2012,8(1):123-126
Modelling has been underdeveloped with respect to constructing palaeobiodiversity curves, but it offers an additional tool for removing sampling from their estimation. Here, an alternative to subsampling approaches, which often require large sample sizes, is explored by the extension and refinement of a pre-existing modelling technique that uses a geological proxy for sampling. Application of the model to the three main clades of dinosaurs suggests that much of their diversity fluctuations cannot be explained by sampling alone. Furthermore, there is new support for a long-term decline in their diversity leading up to the Cretaceous–Paleogene (K–Pg) extinction event. At present, use of this method with data that includes either Lagerstätten or ‘Pull of the Recent’ biases is inappropriate, although partial solutions are offered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号