首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2009年   1篇
  2008年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 62 毫秒
1
1.
We report the construction of subunit interface mutants of rabbit muscle aldolase A with altered quaternary structure. A mutation has been described that causes nonspherocytic hemolytic anemia and produces a thermolabile aldolase (Kishi H et al., 1987, Proc Natl Acad Sci USA 84:8623-8627). The disease arises from substitution of Gly for Asp-128, a residue at the subunit interface of human aldolase A. To elucidate the role of this residue in the highly homologous rabbit aldolase A, site-directed mutagenesis is used to replace Asp-128 with Gly, Ala, Asn, Gln, or Val. Rabbit aldolase D128G purified from Escherichia coli is found to be similar to human D128G by kinetic analysis, CD, and thermal inactivation assays. All of the mutant rabbit aldolases are similar to the wild-type rabbit enzyme in secondary structure and kinetic properties. In contrast, whereas the wild-type enzyme is a tetramer, chemical crosslinking and gel filtration indicate that a new dimeric species exists for the mutants. In sedimentation velocity experiments, the mutant enzymes as mixtures of dimer and tetramer at 4 degrees C. Sedimentation at 20 degrees C shows that the mutant enzymes are > 99.5% dimeric and, in the presence of substrate, that the dimeric species is active. Differential scanning calorimetry demonstrates that Tm values of the mutant enzymes are decreased by 12 degrees C compared to wild-type enzyme. The results indicate that Asp-128 is important for interface stability and suggest that 1 role of the quaternary structure of aldolase is to provide thermostability.  相似文献   
2.
In rare but nevertheless important cases it is of practical interest to decrease the thermostability of an enzyme, that is, to increase thermolability in a controlled manner. In the present model study, this unconventional goal has been reached by applying directed evolution to the lipase from Pseudomonas aeruginosa (PAL). By utilizing the B‐factor iterative test (B‐FIT), previously developed to increase the thermostability of enzymes, it was possible to reduce the value from 71.6°C in the case of wild type (WT‐PAL) to 35.6°C (best mutant) without affecting the catalytic profile in terms of substrate acceptance or enantioselectivity at room temperature. Accordingly, saturation mutagenesis was performed at sites in PAL, which on the basis of its X‐ray structure, have the lowest B‐factors indicative of high rigidity. Focused mutations were introduced which can be expected to decrease rigidity, the ensuing increased flexibility leading to higher thermolability without changing the actual catalytic profile. Biotechnol. Bioeng. 2009;102: 1712–1717. © 2008 Wiley Periodicals, Inc.  相似文献   
3.
Abstract: Glutamate dehydrogenase (GDH), an enzyme that is central to the metabolism of glutamate, is present at high levels in the mammalian brain. Studies on human leukocytes and rat brain suggested the presence of two GDH activities differing in thermal stability and allosteric regulation, but molecular biological investigations led to the cloning of two human GDH-specific genes encoding highly homologous polypeptides. The first gene, designated GLUD1, is expressed in all tissues (housekeeping GDH), whereas the second gene, designated GLUD2, is expressed specifically in neural and testicular tissues. In this study, we obtained both GDH isoenzymes in pure form by expressing a GLUD1 cDNA and a GLUD2 cDNA in Sf9 cells and studied their properties. The enzymes generated showed comparable catalytic properties when fully activated by 1 mM ADP. However, in the absence of ADP, the nerve tissue-specific GDH showed only 5% of its maximal activity, compared with ~40% showed by the housekeeping enzyme. Low physiological levels of ADP (0.05–0.25 mM) induced a concentration-dependent enhancement of enzyme activity that was proportionally greater for the nerve tissue GDH (by 550–1,300%) than of the housekeeping enzyme (by 120–150%). Magnesium chloride (1–2 mM) inhibited the nonactivated housekeeping GDH (by 45–64%); this inhibition was reversed almost completely by ADP. In contrast, Mg2+ did not affect the nonstimulated nerve tissue-specific GDH, although the cation prevented much of the allosteric activation of the enzyme at low ADP levels (0.05–0.25 mM). Heat-inactivation experiments revealed that the half-life of the housekeeping and nerve tissue-specific GDH was 3.5 and 0.5 h, respectively. Hence, the nerve tissue-specific GDH is relatively thermolabile and has evolved into a highly regulated enzyme. These allosteric properties may be of importance for regulating brain glutamate fluxes in vivo under changing energy demands.  相似文献   
4.
The existence of significant variability in duration and temperature norms of development between families within insect populations has been shown for the first time. This variability is inferfamily and therefore has genetic ground. Revealed for the first time is the statistically significant positive correlation between the regression coefficient of the development rate for temperature and the temperature threshold for development of eggs and larvae from different families. The greater the slope of the regression line of the development rate for temperature, the higher the temperature threshold value in this particular family. These results demonstrate for the first time the existence of genetic co-variation between the regression coefficient and the temperature threshold within the insect populations. It is suggested that the source of the interpopulational and interspecies changes in the temperature reaction norms of the insect development might be the intrapopulational hereditary variability of the development duration, regression coefficient, and the development threshold, this variability being an object of natural selection. It was shown that in all studied families and populations the values of the linear regression coefficient of development rates for temperature in eggs of the linden bug Pyrrhocoris apterus were markedly and statistically significantly higher, while the temperature threshold values—lower as compared with the corresponding parameters in larvae. These results obviously are in contradiction with the concept of the “isomorphism of development rates” (Jarosik et al., 2002), according to which the development threshold for all life cycle stages of a species should be the same, whereas only slopes of the regression lines of the development rate for temperature can differ. For the first time the absence of genetic covariation has been shown between the temperature norms of development of different life cycle stages of the species—eggs and larvae. This means that the regression coefficient as well as the sum of the degree-days and the development threshold in eggs and larvae are inherited independently and therefore they can be independently changed in evolution in correspondence with specific environmental conditions, under which these life cycle stages take place.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号