首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   13篇
  2023年   2篇
  2020年   1篇
  2019年   13篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2013年   4篇
  2012年   5篇
  2011年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Understanding the electron and phonon transport characteristics is crucial for designing and developing high performance thermoelectric materials. Weak scattering effects on charge carriers, characterized by deformation potential and alloy scattering potential, are favorable for thermoelectric solid solutions to enable high carrier mobility and thereby promising thermoelectric performance. Mg2(Si,Sn) solid solutions have attracted much attention due to their low cost and environmental compatibility. Usually, their high thermoelectric performance with ZT ~ 1 is ascribed to the band convergence and reduced lattice thermal conductivity caused by alloying. In this work, both a low deformation potential Ξ = 13 eV and a low alloy scattering potential U = 0.7 eV are found for the thermoelectric alloys by characterizing and modeling of thermoelectric transport properties. The band convergence is also verified by the increased density‐of‐states effective mass. It is proposed that, in addition to band convergence and reduced lattice thermal conductivity, the low deformation potential and alloy scattering potential are additional intrinsic features that contribute to the high thermoelectric performance of the solid solutions.  相似文献   
2.
Here, an effective design strategy of polymer thermoelectric materials based on structural control in doped polymer semiconductors is presented. The strategy is illustrated for two archetypical polythiophenes, e.g., poly(2,5‐bis(3‐dodecyl‐2‐thienyl)thieno[3,2‐b]thiophene) (C12‐PBTTT) and regioregular poly(3‐hexylthiophene) (P3HT). FeCl3 doping of aligned films results in charge conductivities up to 2 × 105 S cm?1 and metallic‐like thermopowers similar to iodine‐doped polyacetylene. The films are almost optically transparent and show strongly polarized near‐infrared polaronic bands (dichroic ratio >10). The comparative study of structure–property correlations in P3HT and C12‐PBTTT identifies three conditions to obtain conductivities beyond 105 S cm?1: i) achieve high in‐plane orientation of conjugated polymers with high persistence length; ii) ensure uniform chain oxidation of the polymer backbones by regular intercalation of dopant molecules in the polymer structure without disrupting alignment of π‐stacked layers; and iii) maintain a percolating nanomorphology along the chain direction. The highly anisotropic conducting polymer films are ideal model systems to investigate the correlations between thermopower S and charge conductivity σ. A scaling law S ∝ σ?1/4 prevails along the chain direction, but a different S ∝ ?ln(σ) relation is observed perpendicular to the chains, suggesting different charge transport mechanisms. The simultaneous increase of charge conductivity and thermopower along the chain direction results in a substantial improvement of thermoelectric power factors up to 2 mW m?1 K?2 in C12‐PBTTT.  相似文献   
3.
4.
5.
Half‐Heusler (HH) alloys are among the best promising thermoelectric (TE) materials applicable for the middle‐to‐high temperature power generation. Despite of the large thermoelectric power factor and decent figure‐of‐merit ZT (≈1), their broad applications and enhancement on TE performance are limited by the high intrinsic lattice thermal conductivity (κL) due to insufficiencies of phonon scattering mechanisms, and the fewer powerful strategies associated with the microstructural engineering for HH materials. This study reports a bottom‐up nanostructure synthesis approach for these HH materials based on the displacement reaction between metal chlorides/bromides and magnesium (or lithium), followed by vacuum‐assisted spark plasma sintering process. The samples are featured with dense dislocation arrays at the grain boundaries, leading to a minimum κL of ≈1 W m?1 K?1 at 900 K and one of the highest ZT (≈1) and predicted η (≈11%) for n‐type Hf0.25Zr0.75NiSn0.97Sb0.03. Further manipulation on the dislocation defects at the grain boundaries of p‐type Nb0.8Ti0.2FeSb leads to enhanced maximum power factor of 47 × 10?4 W m?1 K?2 and the predicted η of ≈7.5%. Moreover, vanadium substitution in FeNb0.56V0.24Ti0.2Sb significantly promotes the η to ≈11%. This strategy can be extended to a broad range of advanced alloys and compounds for improved properties.  相似文献   
6.
The ultrahigh thermoelectric performance of SnSe‐based single crystals has attracted considerable interest in their polycrystalline counterparts. However, the temperature‐dependent structural transition in SnSe‐based thermoelectric materials and its relationship with their thermoelectric performance are not fully investigated and understood. In this work, nanolaminar SnSe polycrystals are prepared and characterized in situ using neutron and synchrotron powder diffraction measurements at various temperatures. Rietveld refinement results indicate that there is a complete inter‐orthorhombic evolution from Pnma to Cmcm by a series of layer slips and stretches along the a‐ and b‐axes over a 200 K temperature range. This phase transition leads to drastic enhancement of the carrier concentration and phonon scattering above 600 K. Moreover, the unique nanolaminar structure effectively enhances the carrier mobility of SnSe. Their grain and layer boundaries further improve the phonon scattering. These favorable factors result in a high ZT of 1.0 at 773 K for pristine SnSe polycrystals. The thermoelectric performances of polycrystalline SnSe are further improved by p‐type and n‐type dopants (i.e., doped with Ag and SnCl2, respectively), and new records of ZT are achieved in Ag0.015Sn0.985Se (ZT of 1.3 at 773 K) and SnSe0.985Cl0.015 (ZT of 1.1 at 773 K) polycrystals.  相似文献   
7.
Oxygen‐containing compounds are promising thermoelectric (TE) materials for their chemical and thermal stability. As compared with the high‐performance p‐type counterparts (e.g., ZT ≈1.5 for BiCuSeO), the enhancement of the TE performance of n‐type oxygen‐containing materials remains challenging due to their mediocre electrical conductivity and high thermal conductivity. Here, n‐type layered Bi2O2Se is reported as a potential TE material, of which the thermal conductivity and electrical transport properties can be effectively tuned via carrier engineering and hierarchical microstructure. By selective modification of insulating [Bi2O2]2+ layers with Ta dopant, carrier concentration can be increased by four orders of magnitude (from 1015 to 1019 cm?3) while relatively high carrier mobility can be maintained, thus greatly enhancing the power factors (≈451.5 µW K?2 m?1). Meanwhile, the hierarchical microstructure can be induced by Ta doping, and the phonon scattering can be strengthened by atomic point defects, nanodots of 5–10 nm and grains of sub‐micrometer level, which progressively suppresses the lattice thermal conductivity. Accordingly, the ZT value of Bi1.90Ta0.10O2Se reaches 0.36 at 773 K, a ≈350% improvement in comparison with that of the pristine Bi2O2Se. The average ZT value of 0.30 from 500 to 823 K is outstanding among n‐type oxygen‐containing TE materials. This work provides a desirable way for enhancing the ZT values in oxygen‐containing compounds.  相似文献   
8.
Colloidal quantum dots (CQDs) are attractive materials for thermoelectric applications due to their simple and low‐cost processing; advantageously, they also offer low thermal conductivity and high Seebeck coefficient. To date, the majority of CQD thermoelectric films reported upon have been p‐type, while only a few reports are available on n‐type films. High‐performing n‐ and p‐type films are essential for thermoelectric generators (TEGs) with large output voltage and power. Here, high‐thermoelectric‐performance n‐type CQD films are reported and showcased in high‐performance all‐CQD TEGs. By engineering the electronic coupling in the films, a thorough removal of insulating ligands is achieved and this is combined with excellent surface trap passivation. This enables a high thermoelectric power factor of 24 µW m?1 K?2, superior to previously reported n‐type lead chalcogenide CQD films operating near room temperature (<1 µW m?1 K?2). As a result, an all‐CQD film TEG with a large output voltage of 0.25 V and a power density of 0.63 W m?2 at ?T = 50 K is demonstrated, which represents an over fourfold enhancement to previously reported p‐type only CQD TEGs.  相似文献   
9.
Colloidal quantum dots (CQDs) are demonstrated to be promising materials to realize high‐performance thermoelectrics owing to their low thermal conductivity. The most studied CQD films, however, are using long ligands that require high processing and operation temperature (>400 °C) to achieve optimum thermoelectric performance. Here the thermoelectric properties of CQD films cross‐linked using short ligands that allow strong inter‐QD coupling are reported. Using the ligands, p‐type thermoelectric solids are demonstrated with a high Seebeck coefficient and power factor of 400 μV K?1 and 30 µW m?1 K?2, respectively, leading to maximum ZT of 0.02 at a lower measurement temperature (<400 K) and lower processing temperature (<300 °C). These ligands further reduce the annealing temperature to 175 °C, significantly increasing the Seebeck coefficient of the CQD films to 580 μV K?1. This high Seebeck coefficient with a superior ZT near room temperature compared to previously reported high temperature‐annealed CQD films is ascribed to the smaller grain size, which enables the retainment of quantum confinement and significantly increases the hole effective mass in the films. This study provides a pathway to approach quantum confinement for achieving a high Seebeck coefficient yet strong inter‐QD coupling, which offers a step toward low‐temperature‐processed high‐performance thermoelectric generators.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号