首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   39篇
  2024年   2篇
  2023年   1篇
  2020年   6篇
  2019年   13篇
  2018年   15篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   6篇
  2012年   2篇
  2011年   3篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
1.
The rapid development of the concept of the “Internet of Things (IoT)” requires wearable devices with maintenance‐free batteries, and thermoelectric energy conversion based on large‐area flexible materials has attracted much attention. Among large‐area flexible materials, 2D materials, such as graphene and related materials, are promising for thermoelectric applications due to their excellent transport properties and large power factors. In this Review, both single‐crystalline and polycrystalline 2D materials are surveyed using the experimental reports on thermoelectric devices of graphene, black phosphorus, transition metal dichalcogenides, and other 2D materials. In particular, their carrier‐density dependent thermoelectric properties and power factors maximized by Fermi level tuning techniques are focused. The comparison of the relevant performances between 2D materials and commonly used thermoelectric materials reveals the significantly enhanced power factors in 2D materials. Moreover, the current progress in thermoelectric module applications using large‐area 2D material thin films is summarized, which consequently offers great potential for the use of 2D materials in large‐area flexible thermoelectric device applications. Finally, important remaining issues and future perspectives, such as preparation methods, thermal transports, device designs, and promising effects in 2D materials, are discussed.  相似文献   
2.
Half‐Heusler (HH) compounds have shown great potential in waste heat recovery. Among them, p‐type NbFeSb and n‐type ZrNiSn based alloys have exhibited the best thermoelectric (TE) performance. However, TE devices based on NbFeSb‐based HH compounds are rarely studied. In this work, bulk volumes of p‐type (Nb0.8Ta0.2)0.8Ti0.2FeSb and n‐type Hf0.5Zr0.5NiSn0.98Sb0.02 compounds are successfully prepared with good phase purity, compositional homogeneity, and matchable TE performance. The peak zTs are higher than 1.0 at 973 K for Hf0.5Zr0.5NiSn0.98Sb0.02 and at 1200 K for (Nb0.8Ta0.2)0.8Ti0.2FeSb. Based on an optimal design by a full‐parameters 3D finite element model, a single stage TE module with 8 n‐p HH couples is assembled. A high conversion efficiency of 8.3% and high power density of 2.11 W cm?2 are obtained when hot and cold side temperatures are 997 and 342 K, respectively. Compared to the previous TE module assembled by the same materials, the conversion efficiency is enhanced by 33%, while the power density is almost the same. Given the excellent mechanical robustness and thermal stability, matchable thermal expansion coefficient and TE properties of NbFeSb and ZrNiSn based HH alloys, this work demonstrates their great promise for power generation with both high conversion efficiency and high power density.  相似文献   
3.
The (Bi,Sb)2Te3 (BST) compounds have long been considered as the benchmark of thermoelectric (TE) materials near room temperature especially for refrigeration. However, their unsatisfactory TE performances in wide‐temperature range severely restrict the large‐scale applications for power generation. Here, using a self‐assembly protocol to deliver a homogeneous dispersion of 2D inclusion in matrix, the first evidence is shown that incorporation of MXene (Ti3C2Tx) into BST can simultaneously achieve the improved power factor and greatly reduced thermal conductivity. The oxygen‐terminated Ti3C2Tx with proper work function leads to highly increased electrical conductivity via hole injection and retained Seebeck coefficient due to the energy barrier scattering. Meanwhile, the alignment of Ti3C2Tx with the layered structure significantly suppresses the phonon transport, resulting in higher interfacial thermal resistance. Accordingly, a peak ZT of up to 1.3 and an average ZT value of 1.23 from 300 to 475 K are realized for the 1 vol% Ti3C2Tx/BST composite. Combined with the high‐performance composite and rational device design, a record‐high thermoelectric conversion efficiency of up to 7.8% is obtained under a temperature gradient of 237 K. These findings provide a robust and scalable protocol to incorporate MXene as a versatile 2D inclusion for improving the overall performance of TE materials toward high energy‐conversion efficiency.  相似文献   
4.
In an effort to create a paintable/printable thermoelectric material, comprised exclusively of organic components, polyaniline (PANi), graphene, and double‐walled nanotube (DWNT) are alternately deposited from aqueous solutions using the layer‐by‐layer assembly technique. Graphene and DWNT are stabilized with an intrinsically conductive polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). An 80 quadlayer thin film (≈1 μm thick), comprised of a PANi/graphene‐PEDOT:PSS/PANi/DWNT‐PEDOT:PSS repeating sequence, exhibits unprecedented electrical conductivity (σ ≈ 1.9 × 105 S m?1) and Seebeck coefficient (S ≈ 120 μV K?1) for a completely organic material. These two values yield a thermoelectric power factor (PF = S 2 σ ?1) of 2710 μW m?1 K?2, which is the highest value ever reported for a completely organic material and among the highest for any material measured at room temperature. These outstanding properties are attributed to the highly ordered structure in the multilayer assembly. This water‐based thermoelectric nanocomposite is competitive with the best inorganic semiconductors (e.g., bismuth telluride) at room temperature and can be applied as a coating to any flexible surface (e.g., fibers in clothing). For the first time, there is a real opportunity to harness waste heat from unconventional sources, such as body heat, to power devices in an environmentally‐friendly way.  相似文献   
5.
Despite the unfavorable band structure with twofold degeneracy at the valence band maximum, MgAgSb is still an excellent p‐type thermoelectric material for applications near room temperature. The intrinsically weak electron–phonon coupling, reflected by the low deformation potential Edef ≈ 6.3 eV, plays a crucial role in the relatively high power factor of MgAgSb. More importantly, Li is successfully doped into Mg site to tune the carrier concentration, leading to the resistivity reduction by a factor of 3 and a consequent increase in power factor by ≈30% at 300 K. Low lattice thermal conductivity can be simultaneously achieved by all‐scale hierarchical phonon scattering architecture including high density of dislocations and nanoscale stacking faults, nanoinclusions, and multiscale grain boundaries. Collectively, much higher average power factor ≈25 μW cm?1 K?2 with a high average ZT ≈ 1.1 from 300 to 548 K is achieved for 0.01 Li doping, which would result in a high output power density ≈1.56 W cm?2 and leg efficiency ≈9.2% by calculations assuming cold‐side temperature Tc = 323 K, hot‐side temperature Th = 548 K, and leg length = 2 mm.  相似文献   
6.
Herein, a high figure of merit (ZT) of ≈1.7 at 823 K is reported in p‐type polycrystalline Cd‐doped SnSe by combining cation vacancies and localized‐lattice engineering. It is observed that the introduction of Cd atoms in SnSe lattice induce Sn vacancies, which act as p‐type dopants. A combination of facile solvothermal synthesis and fast spark plasma sintering technique boosts the Sn vacancy to a high level of ≈2.9%, which results in an optimum hole concentration of ≈2.6 × 1019 cm?3 and an improved power factor of ≈6.9 µW cm?1 K?2. Simultaneously, a low thermal conductivity of ≈0.33 W m?1 K?1 is achieved by effective phonon scattering at localized crystal imperfections, as observed by detailed structural characterizations. Density functional theory calculations reveal that the role of Cd atoms in the SnSe lattice is to reduce the formation energy of Sn vacancies, which in turn lower the Fermi level down into the valence bands, generating holes. This work explores the fundamental Cd‐doping mechanisms at the nanoscale in a SnSe matrix and demonstrates vacancy and localized‐lattice engineering as an effective approach to boosting thermoelectric performance. The work provides an avenue in achieving high‐performance thermoelectric properties of materials.  相似文献   
7.
8.
Iodine‐doped n‐type SnSe polycrystalline by melting and hot pressing is prepared. The prepared material is anisotropic with a peak ZT of ≈0.8 at about 773 K measured along the hot pressing direction. This is the first report on thermoelectric properties of n‐type Sn chalcogenide alloys. With increasing content of iodine, the carrier concentration changed from 2.3 × 1017 cm?3 (p‐type) to 5.0 × 1015 cm?3 (n‐type) then to 2.0 × 1017 cm?3 (n‐type). The decent ZT is mainly attributed to the intrinsically low thermal conductivity due to the high anharmonicity of the chemical bonds like those in p‐type SnSe. By alloying with 10 at% SnS, even lower thermal conductivity and an enhanced Seebeck coefficient were achieved, leading to an increased ZT of ≈1.0 at about 773 K measured also along the hot pressing direction.  相似文献   
9.
Half‐Heusler (HH) compounds have gained ever‐increasing popularity as promising high temperature thermoelectric materials. High figure of merit zT of ≈1.0 above 1000 K has recently been realized for both n‐type and p‐type HH compounds, demonstrating the realistic prospect of these high temperature compounds for high efficiency power generation. Here, recent progress in advanced fabrication techniques and the intrinsic atomic disorders in HH compounds, which are linked to the understanding of the electrical transport, is discussed. Thermoelectric transport features of n‐type ZrNiSn‐based HH alloys are particularly emphasized, which is beneficial to further improving thermoelectric performance and comprehensively understanding the underlying mechanisms in HH thermoelectric materials. The rational design and realization of new high performance p‐type Fe(V,Nb)Sb‐based HH compounds are also demonstrated. The outlook for future research directions of HH thermoelectric materials is also discussed.  相似文献   
10.
Thermoelectric materials could play an increasing role for the efficient use of energy resources and waste heat recovery in the future. The thermoelectric efficiency of materials is described by the figure of merit ZT = (S2σT)/κ (S Seebeck coefficient, σ electrical conductivity, κ thermal conductivity, and T absolute temperature). In recent years, several groups worldwide have been able to experimentally prove the enhancement of the thermoelectric efficiency by reduction of the thermal conductivity due to phonon blocking at nanostructured interfaces. This review addresses recent developments from thermoelectric model systems, e.g. nanowires, nanoscale meshes, and thermionic superlattices, up to nanograined bulk‐materials. In particular, the progress of nanostructured silicon and related alloys as an emerging material in thermoelectrics is emphasized. Scalable synthesis approaches of high‐performance thermoelectrics for high‐temperature applications is discussed at the end.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号