首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   5篇
  国内免费   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有25条查询结果,搜索用时 328 毫秒
1.
1. Canopy‐foraging ants have carbohydrate‐rich diets and the stoichiometric excess of carbon may result in energetic allocation decisions that facilitate ecological dominance. 2. If dietary carbohydrates facilitate ecological dominance in canopy ants, then the mechanism for this relationship is unknown. 3. Four hypotheses were posit that may explain how a carbohydrate‐rich diet might facilitate ecological dominance in canopy ants: Aggressive Defense, Metabolic Fuel, Foraging Success, and Prey Acquisition. 4. To assess these hypotheses, experiments were conducted on the canopy‐foraging bullet ant, Paraponera clavata (Fabricius), an omnivorous species that demonstrates high variability in the relative contribution of carbohydrates to the diets of colonies. 5. No support was found for the Aggressive Defense, Metabolic Fuel and Prey Acquisition hypotheses. 6. The Foraging Success hypothesis was supported, as the proportion of nectar in the diet predicted the overall foraging success. 7. It was argued that there is no explicit advantage in the exploitation of nectar over other food resources, other than the fact that it is the most accessible food resource in the rainforest canopy.  相似文献   
2.
The aim of this study was to follow the circadian fluctuation of the spontaneous pedal rate and the motor spontaneous tempo (MST) in a sample of highly trained cyclists. Ten subjects performed five test sessions at various times of day. During each test session, subjects were required to perform (i) a finger-tapping task, in order to set the MST and (ii) a submaximal exercise on a cycle ergometer for 15 min at 50% of their Wmax. For this exercise, pedal rate was freely chosen. Spontaneous pedal rate and heart rate (HR) were measured continuously.

The results demonstrated a circadian variation for mean oral temperature, HR, and MST. Under submaximal exercise conditions, HR showed no significant time-of-day influence although spontaneous pedal rate changed significantly throughout the day. Circadian rhythm of oral temperature and pedal rate were strongly correlated. Moreover, a significant positive correlation was found between MST and pedal rate. Both parameters may be controlled by a common brain oscillator. MST, rest HR, and pedal rate changes follow the rhythm of internal temperature, which is considered to be the major marker in chronobiology, therefore, if there is a relation between MST and pedal rate, we cannot rule out partial dependence of both parameters on body temperature.  相似文献   
3.
Understanding how and why certain clades diversify greatly in morphology whereas others do not remains a major theme in evolutionary biology. Projecting families of phylogenies into multivariate morphospaces can distinguish two scenarios potentially leading to unequal morphological diversification: unequal magnitude of change per phylogenetic branch, and unequal efficiency in morphological innovation. This approach is demonstrated using a case study of skulls in sister clades within the South American fish superfamily Anostomoidea. Unequal morphological diversification in this system resulted not from the morphologically diverse clade changing more on each phylogenetic branch, but from that clade distributing an equal amount of change more widely through morphospace and innovating continually. Although substantial morphological evolution occurred throughout the less diverse clade's history, most of that clade's expansion in morphospace occurred in the most basal branches, and more derived portions of that radiation oscillated within previously explored limits. Because simulations revealed that there is a maximum 2.7% probability of generating two clades that differ so greatly in the density of lineages within morphospace under a null Brownian model, the observed difference in pattern likely reflects a difference in the underlying evolutionary process. Clade-specific factors that may have promoted or arrested morphological diversification are discussed.  相似文献   
4.
Macroevolutionary theory predicts high rates of evolution should occur early in a clade's history as species exploit ecological opportunity. Evidence from the fossil record has shown a high prevalence of early bursts in morphological evolution, but recent work has provided little evidence for early high rates in the evolution of extant clades. Here, I test the prevalence of early bursts in extant data using phylogenetic comparative methods. Existing models are extended to allow a shift from a background Brownian motion (BM) process to an early burst process within subclades of phylogenies, rather than an early burst being applied to an entire phylogenetic tree. This nested early burst model is compared to other modes of evolution that can occur within subclades, such as evolution with a constraint (Ornstein‐Uhlenbeck model) and nested BM rate shift models. These relaxed models are validated using simulations and then are applied to body size evolution of three major clades of amniotes (mammals, squamates and aves) at different levels of taxonomic organization (order, family). Applying these unconstrained models greatly increases the support for early bursts within nested subclades, and so early bursts are the most common model of evolution when only one shift is analysed. However, the relative fit of early burst models is worse than models that allow for multiple shifts of the BM or OU process. No single‐shift or homogenous model is superior to models of multiple shifts in BM or OU evolution, but the patterns shown by these multirate models are generally congruent with patterns expected from early bursts.  相似文献   
5.
Palaeontologists have long employed discrete categorical data to capture morphological variation in fossil species, using the resulting character–taxon matrices to measure evolutionary tempo, infer phylogenies and capture morphological disparity. However, to date these have been seen as separate approaches despite a common goal of understanding morphological evolution over deep time. Here I argue that there are clear advantages to considering these three lines of enquiry in a single space: the phylomorphospace. Conceptually these high‐dimensional spaces capture how a phylogenetic tree explores morphospace and allow us to consider important process questions around evolutionary rates, constraints, convergence and directional trends. Currently the literature contains fundamentally different approaches used to generate such spaces, with no direct comparison between them, despite the differing evolutionary histories they imply. Here I directly compare five different phylomorphospace approaches, three with direct literature equivalents and two that are novel. I use a single empirical case study of coelurosaurian theropod dinosaurs (152 taxa, 853 characters) to show that under many analyses the literature‐derived approaches tend to reflect introduced phylogenetic (rather than the intended morphological) signal. The two novel approaches, which produce limited ancestral state estimates prior to ordination, are able to minimize this phylogenetic signal and thus exhibit more realistic amounts of phylogenetic signal, rate heterogeneity, and convergent evolution.  相似文献   
6.
Operant generalization has been demonstrated in neonates only recently. To investigate the development of intradimensional stimulus control immediately after hatching, northern bobwhite chicks (Colinus virginianus) pecked for brief heat presentations while hearing a high-pitched sound repeated at two constant rates: an S+ tempo signaling a rich reinforcement schedule, alternating with an S− tempo signaling a leaner schedule. Tempo generalization was then assessed in extinction. The expected excitatory gradients were produced after a threshold number of training sessions; unexpectedly, below that threshold, gradients were inhibitory. The chicks’ rapidly developing thermoregulatory capability may have resulted in a change from perceived negative reinforcement initially to positive reinforcement later. Given past research showing excitatory gradients after negative reinforcement, we suggest that these results demonstrate that all negative reinforcement is not equivalent, and, further, that classical conditioning effects require consideration.  相似文献   
7.
Summary A traditional focus of evolutionary paleoecology has been the reconstruction of the selective forces that have affected evolving lineages through time. If the history of those lineages is dominated by stasis and punctuation, however, this is at best an inadequate and at worst a misdirected research strategy for macroevolution, because long-term stasis implies that environmental factors may have less influence on evolving lineages than previously believed. Such reasoning has led some proponents of punctuated views to reject ecological interactions as predominant or even significant forces in evolution. This is not a necessary conclusion. It is possible to accept the empirical predominance of stasis in evolution and at the same time the importance of ecology in affecting the course of evolutionary trends within lineages. If stasis prevails, ecology matters in the evolution of lineages if either (1) stabilizing selection is an important cause of stasis or (2) ecological interactions play an important role in controlling the speciation process. Viewing allopatric speciation explicitly as a three-stage process (consisting of formation, persistence and differentiation of isolated populations) clarifies testing of the role of ecology in speciation and may redirect clade-specific evolutionary paleoecology towards more enlightening interaction with other areas of macroevolutionary study.  相似文献   
8.
Understanding how phenotypic diversity evolves is a major interest of evolutionary biology. Habitat use is an important factor in the evolution of phenotypic diversity of many animal species. Interestingly, male and female phenotypes have been frequently shown to respond differently to environmental variation. At the macroevolutionary level, this difference between the sexes is frequently analysed using phylogenetic comparative tools to assess variation in sexual dimorphism (SD) across taxa in relation to habitat. A shortcoming of such analyses is that they evaluate the degree of dimorphism itself and therefore they do not provide access to the evolutionary trajectories of each sex. As such, the relative contribution of male and female phenotypes on macroevolutionary patterns of sexual dimorphism cannot be directly assessed. Here, we investigate how habitat use shapes phenotypic diversity in wall lizards using phylogenetic comparative tools to simultaneously assess the tempo and mode of evolution in males, females and the degree of sexual dimorphism. We find that both sexes have globally diversified under similar, but not identical, processes, where habitat use seems to drive macroevolutionary variation in head shape, but not in body size or relative limb length. However, we also observe small differences in the evolutionary dynamics of male and female phenotypes that have a marked impact on macroevolutionary patterns of SD, with important implications for our interpretation of what drives phenotypic diversification within and between the sexes.  相似文献   
9.
Recombination is beneficial over the long term, allowing more effective selection. Despite long-term advantages of recombination, local recombination suppression can evolve and lead to genomic degeneration, in particular on sex chromosomes. Here, we investigated the tempo of degeneration in nonrecombining regions, that is, the function curve for the accumulation of deleterious mutations over time, leveraging on 22 independent events of recombination suppression identified on mating-type chromosomes of anther-smut fungi, including newly identified ones. Using previously available and newly generated high-quality genome assemblies of alternative mating types of 13 Microbotryum species, we estimated degeneration levels in terms of accumulation of nonoptimal codons and nonsynonymous substitutions in nonrecombining regions. We found a reduced frequency of optimal codons in the nonrecombining regions compared with autosomes, that was not due to less frequent GC-biased gene conversion or lower ancestral expression levels compared with recombining regions. The frequency of optimal codons rapidly decreased following recombination suppression and reached an asymptote after ca. 3 Ma. The strength of purifying selection remained virtually constant at dN/dS = 0.55, that is, at an intermediate level between purifying selection and neutral evolution. Accordingly, nonsynonymous differences between mating-type chromosomes increased linearly with stratum age, at a rate of 0.015 per My. We thus develop a method for disentangling effects of reduced selection efficacy from GC-biased gene conversion in the evolution of codon usage and we quantify the tempo of degeneration in nonrecombining regions, which is important for our knowledge on genomic evolution and on the maintenance of regions without recombination.  相似文献   
10.
This study investigates individual flexibility of foraging ants (Pheidole dentata) when the number of nestmates is altered by establishing broodless and queenless colony fragments all originating from a single big colony. Scouts from small groups (5 to 15 ants) behave like solitary foragers. They feed for long periods of time, they return slowly into the nest, and they recruit weakly. The ingested food is distributed by trophallaxis. Scouts from larger (20- to 30-ant) fragments forage more socially. Feeding and return times are short and recruitment is strong. Later the food is always transported into the nest. Two alternative mechanisms are discussed to explain the differences in individual foraging behavior. For the first—individual flexibility—assumptions have to be made about the capabilities of the individual, its work repertoire, and decision making outside the nest. The second mechanism takes into account that ants are capable of perceiving CO 2 concentration differences and that ant groups are more active at higher CO 2 concentrations. The organizational differences at the group level are explained simply by tempo differences in individual ants without making assumptions about individual capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号