首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   7篇
  国内免费   2篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   36篇
  2012年   5篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   5篇
  2006年   5篇
  2004年   3篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   3篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有150条查询结果,搜索用时 31 毫秒
1.
Thresholds for detecting vibrotactile signals of variable frequency applied to the thenar eminence of the hand by small and large contactors were measured in subjects ranging in age from 10 to 89 years. Thresholds were found to increase as a function of age, but the rate of increase was greater after than before the age of 65 years. The rate of loss of vibrotactile sensitivity was substantially greater in the P channel (mediated by Pacinian corpuscles) than in the NP I channel (mediated by rapidly adapting fibers), the NP II channel (mediated by slowly adapting type II fibers), or the NP HI channel (mediated by slowly adapting type I fibers). Women were frequently found to have greater sensitivity than men.  相似文献   
2.
3.
To achieve favorable Frictional Tactile Sensation (FTS) for robot and humanoid fingers, this report investigated the effects of human finger sweat on Friction Coefficient (FC) and verified the effectiveness of artificial sweat on FTS tbr a humanoid finger. The results show that the model sweat (salt and urea water faked real sweat) increases the FC of the real finger sliding on the high hygroscopic and rough surface (paper), whereas on the low hygroscopic and smooth surface (PMMA), the sweat forms a fluid film and decreases FC, restricting severe finger adhesion. Further, the film formation and capillary adhesion force of sweat were discussed. The experimental results with the artificial sweats (ethanol and water) and humanoid finger (silicone rubber skin with tactile sensors) verifies the effectiveness. The artificial sweat restricts severe adhesion (stick-slip vibration), and enhances cognitive capability of FTS.  相似文献   
4.
Young (21–26 years, n?=?20) and old (55–86 years, n?=?25) participants were tested for their ability to recognize raised letters (6-mm high, 1-mm relief) by touch. Spatial resolution thresholds were also measured with grating domes to derive an index of the degree of afferent innervation at the fingertip. Letter recognition in the young group was very consistent and highly accurate (mean, 86% correct), contrasting with the performance of the old group, which was more variable and comparatively low in accuracy (mean, 53% correct). In both groups, spatial resolution thresholds accounted for a substantial portion of the variance in the performance, suggesting a strong link between age-dependent variations in tactile innervation and recognition accuracy. The patterns of errors in the old group showed that an inability to encode internal elements specific to certain letters was at the source of most confusion among letters. Whether this inability reflected only deficient peripheral encoding mechanisms or some other alterations at the central level is discussed.  相似文献   
5.
As part of a program to explore patterns of innervation by nociceptor-related thin sensory axons in a variety of peripheral regions, we have labeled calcitonin gene-related peptide immunoreactive (CGRP-IR) nerve fibers in whole mounts of rat testicular tunica vasculosa and cornea. Efforts were undertaken to visualize the numerically significant fluoride-resistant acid phosphatase (FRAP)-containing axon population, whose peripheral endings have heretofore remained undemonstrable due to technical limitations of currently available acid phosphatase methods. Various histochemical markers that colocalize with FRAP in dorsal root ganglion (DRG) and spinal cord were examined, and a plant lectin, Griffonia simplicifolia I-B4, has been identified that not only selectively labels FRAP(+) sensory ganglion cells and central terminals in spinal cord, but also differentially stains a large number of thin axons in testicular and corneal whole mounts. Slender lectin-labeled fibers are abundant in cornea, and are distributed throughout tunica vasculosa preparations unrelated to blood vessels. CGRP-IR axons, in contrast, maintain close adherence to vascular patterns and are more coarse and varicose in appearance.

Lectin staining therefore provides the first practical and specific method for visualization of peripheral FRAP(+) axons consisting principally of sensory C fibers but possibly including a small number of unmyelinated autonomic axons. It should now be feasible, using individual whole-mount preparations from various peripheral nociceptor-innervated tissues, to examine the distributions of both peptidergic and FRAP(+) fibers, which together comprise the vast majority of thin sensory axons. It may then be possible to correlate the observed anatomical patterns with knowledge regarding properties of corresponding physiologically characterized receptive fields.  相似文献   
6.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250?Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm2 area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm2 excitation area), and (ii) a 6-mm diameter circular probe (28-mm2 area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm2 excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5?Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250?Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   
7.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125?Hz sinusoidal for 600?ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16?Hz or 125?Hz for 3000?ms, varying in magnitude 0 to 30?dB above threshold). At all frequencies from 16 to 125?Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   
8.
A computational model based on previous physiological and psychophysical data is presented for the human Pacinian (P) psychophysical channel. The model can predict the probability of detection in simple psychophysical tasks, and hence psychometric functions and thresholds. The model simulates stimulating variable and fixed glabrous skin sites with different-sized contactors and includes spatial variation of monkey P-fiber sensitivities. Therefore, it is especially suitable for studying spatial summation, i.e. the improvement of threshold with increasing contactor area. Selective contributions of neural integration (n.i.) and probability summation (p.s.) are also incorporated into the model. Model predictions are compared to psychophysical results of Gescheider et al. (). The performance of the model regarding the effects of contactor size is very good. In addition to predicting approximately 3?dB improvement of thresholds when the contactor area is doubled, the model also reveals nonlinear contributions of p.s. and n.i. Furthermore, the model asserts that thresholds are largely governed by neural integration when small contactors are used. These and other findings discussed in the article show that the presented model is a helpful tool for formulating testable hypotheses. Although the model can also simulate some temporal summation effects, simulation results do not conform well to previous data on temporal response properties. Thus, the model needs to be refined in that respect.  相似文献   
9.
Psychophysical thresholds for the detection of a 300-Hz burst of vibration applied to the thenar eminence were measured for stimuli applied to the skin through 1.5?cm2 and through 0.05?cm2 contactors. Thresholds were approximately 13?dB lower when the area of the contactor was 1.5?cm2 than when it was 0.05?cm2. The difference between the thresholds measured with the large and small contactors was significantly reduced when only the lowest thresholds obtained in the testing sessions were considered. This result supports the hypothesis that one component of spatial summation in the P channel is probability summation. In addition, threshold measurements within a session were less variable when measured with the 1.5?cm2 contactor. We conclude that spatial summation in the P channel is a joint function of two processes that occur as the areal extent of the stimulus increases: probability summation in which the probability of exceeding the psychophysical detection threshold increases as the number of receptors of varying sensitivities increases, and neural integration in which neural activity originating from separate receptors is combined within the central nervous system rendering the channel more sensitive to the stimulus.  相似文献   
10.
Varying‐coefficient models have become a common tool to determine whether and how the association between an exposure and an outcome changes over a continuous measure. These models are complicated when the exposure itself is time‐varying and subjected to measurement error. For example, it is well known that longitudinal physical fitness has an impact on cardiovascular disease (CVD) mortality. It is not known, however, how the effect of longitudinal physical fitness on CVD mortality varies with age. In this paper, we propose a varying‐coefficient generalized odds rate model that allows flexible estimation of age‐modified effects of longitudinal physical fitness on CVD mortality. In our model, the longitudinal physical fitness is measured with error and modeled using a mixed‐effects model, and its associated age‐varying coefficient function is represented by cubic B‐splines. An expectation‐maximization algorithm is developed to estimate the parameters in the joint models of longitudinal physical fitness and CVD mortality. A modified pseudoadaptive Gaussian‐Hermite quadrature method is adopted to compute the integrals with respect to random effects involved in the E‐step. The performance of the proposed method is evaluated through extensive simulation studies and is further illustrated with an application to cohort data from the Aerobic Center Longitudinal Study.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号