首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2001年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
2.
《Cytotherapy》2014,16(6):776-788
Background aimsPrevious studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype.MethodsThe chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane–derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols.ResultsPorcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential.ConclusionsPorcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid–derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model.  相似文献   
3.
Abstract

Juvenile idiopathic arthritis (JIA) is the most common form of chronic rheumatic disease affecting children worldwide, with some features similar to adult rheumatoid arthritis (RA). In the present study, we aim at investigating novel markers that will allow in the future for tailored, more personalized treatment strategies. Hence, taking notice of several reports proving the role of local acidosis as a causal link between inflammatory diseases and related pain, and the involvement of several carbonic anhydrases (CA, EC 4.2.1.1) isoforms in articular diseases, we evaluated in JIA patients the expression of these metalloenzymes. We identified that JIA patients show high levels of active CA IX and XII isoforms. Our results represent the first evidence of the identification of these enzymes as potential therapeutic targets and development of novel innovative therapies for arthritis, also considering that the two isoforms are validated antitumor targets.  相似文献   
4.
Type 2 diabetes mellitus (T2DM) is increasingly being recognized as an independent risk factor for the onset and progression of osteoarthritis (OA). Extensive studies have focused on the contribution of obesity (excessive mechanical stress), comorbidity frequently found in T2DM, to cartilage destruction during OA development. However, a little is known about how diabetes-related inflammation may affect the local cartilage in a diabetic objective. In the present study, we were able to establish a T2DM rat model using a combination of a low dose of streptozotocin with high-fat and high-sugar diet. Although the cartilage integrity was comparable between the control and T2DM groups, the expression of matrix metalloproteinases-13 (MMP-13) was significantly upregulated in T2DM, indicating the initiation of an early cascade of cartilage degeneration. In parallel, an obvious alteration of subchondral bone remodeling (inhibition of bone formation) was observed, as evidenced by the reduction of osterix-expressing positive cells. Moreover, we demonstrated that the expression of intercellular adhesion molecule-1 (ICAM-1) in the serum and synovium of T2DM rats was elevated, accompanied by an increase of synovitis score. We also noticed that the number of F4/80-positive macrophage cells was significantly increased in the T2DM group. Mechanistically, the expression of ICAM-1 in fibroblast-like synoviocytes can be triggered by glucose and interleukin-1β, which are the two important factors within the joint of T2DM. Given that MMP-13 expression was significantly upregulated in the T2DM cartilage, and that ICAM-1-mediated filtration of macrophage was associated with synovitis, we propose that ICAM-1 is essential for triggering a vicious cycle of inflammation within the joint, which together subsequently drivers the cartilage degradation.  相似文献   
5.
Osteoarthritis is the most common rheumatic pathology and one of the leading causes of disability worldwide. It is a very complex disease whose etiopathogenesis is not fully understood. Furthermore, there are serious limitations for its management, since it lacks specific and sensitive biomarkers for early diagnosis, prognosis and therapeutic monitoring. Proteomic approaches performed in the last few decades have contributed to the knowledge on the molecular mechanisms that participate in this pathology and they have also led to interesting panels of putative biomarker candidates. In the next few years, further efforts should be made for translating these findings into the clinical routines. It is expected that targeted proteomics strategies will be highly valuable for the verification and qualification of biomarkers of osteoarthritis.  相似文献   
6.
There are increasing reports that mesenchymal stem cells (MSCs) are present in various tissues other than bone marrow, including synovium. Here we investigated the optimal conditions for in vitro chondrogenesis of human synovium-derived MSCs and compared these cells with bone marrow-derived MSCs, especially in terms of their chondrogenesis potential. Synovium and bone marrow were harvested from six donors during knee operations for ligament injuries. Digested synovium cells or nucleated cells from bone marrow were expanded clonally. A pellet culture system was used for chondrogenesis, and the best combination of up to three cytokines of the seven assessed. Synovium-derived MSCs plated at a lower density expanded more rapidly. Contrary to previous reports, a combination of TGFbeta and dexamethasone was not sufficient to induce chondrogenesis. However, addition of BMP2 to TGFbeta and dexamethasone dramatically increased cartilage pellet size and the synthesis of cartilage matrix. The cartilage pellets were also analyzed by electron microscopy and immunohistology. DNA content per pellet decreased during chondrogenesis, indicating the pellet increased its size through the accumulation of newly synthesized extracellular matrix. Sequential chondrogenic gene expression was demonstrated by RT-PCR. Synovium-derived MSCs looked similar to the bone marrow-derived MSCs in their surface epitopes and proliferation potential; however, cartilage pellets from synovium were significantly larger than those from bone marrow in patient-matched comparisons. We demonstrated that the combination of TGFbeta, dexamethasone, and BMP2 was optimal for in vitro chondrogenesis of synovium-derived MSCs and that the synovium-derived MSCs have a greater chondrogenesis potential than bone marrow-derived MSCs.  相似文献   
7.
The pro-drug cortisol succinate is frequently used as a substitute for cortisol in organ cultures. We found, however, that in Dulbecco's modified Eagle's medium the time taken for the ester to undergo 50 per cent hydrolysis (t1/2) to cortisol was 75 h. When 15 per cent heat-inactivated normal rabbit serum was present t1/2 decreased to 47 h, but the rate of hydrolysis was not further increased in the presence of porcine articular cartilage or minced synovial tissue. When frozen and thawed synovium was present t1/2 decreased to 33 h, presumably due to the release of carboxyl-esterases from the disrupted cells. The level of tetrahydrocortisol was low in all of the cultures. The slow hydrolysis of cortisol succinate resulted in the exposure of the tissues to undesirable fluctuations in the concentration of active hormone, which decreased to low levels at each medium change. Thus, in co-cultures of porcine synovium and articular cartilage, cortisol had a greater inhibitory effect than cortisol succinate on the breakdown of cartilage matrix caused by synovial tissue.  相似文献   
8.
Endochondral ossification begins from the condensation and differentiation of mesenchymal cells into cartilage. The cartilage then goes through a program of cell proliferation, hypertrophic differentiation, calcification, apoptosis, and eventually is replaced by bone. Unlike most cartilage, articular cartilage is arrested before terminal hypertrophic differentiation. In this study, we showed that TGF-beta/Smad3 signals inhibit terminal hypertrophic differentiation of chondrocyte and are essential for maintaining articular cartilage. Mutant mice homozygous for a targeted disruption of Smad3 exon 8 (Smad3(ex8/ex8)) developed degenerative joint disease resembling human osteoarthritis, as characterized by progressive loss of articular cartilage, formation of large osteophytes, decreased production of proteoglycans, and abnormally increased number of type X collagen-expressing chondrocytes in synovial joints. Enhanced terminal differentiation of epiphyseal growth plate chondrocytes was also observed in mutant mice shortly after weaning. In an in vitro embryonic metatarsal rudiment culture system, we found that TGF-beta1 significantly inhibits chondrocyte differentiation of wild-type metatarsal rudiments. However, this inhibition is diminished in metatarsal bones isolated from Smad3(ex8/ex8) mice. These data suggest that TGF-beta/Smad3 signals are essential for repressing articular chondrocyte differentiation. Without these inhibition signals, chondrocytes break quiescent state and undergo abnormal terminal differentiation, ultimately leading to osteoarthritis.  相似文献   
9.
10.
The aim of this study was to identify the molecules and pathways involved in the cross-talk between meniscus and synovium that may play a critical role in osteoarthritis (OA) pathophysiology. Samples of synovium and meniscus were collected from patients with early and end-stage OA and cultured alone or cocultured. Cytokines, chemokines, metalloproteases, and their inhibitors were evaluated at the gene and protein levels. The extracellular matrix (ECM) changes were also investigated. In early OA cultures, higher levels of interleukin-6 (IL-6) and IL-8 messenger RNA were expressed by synovium and meniscus in coculture compared with meniscus cultured alone. RANTES release was significantly increased when the two tissues were cocultured compared with meniscus cultured alone. Increased levels of matrix metalloproteinase-3 (MMP-3) and MMP-10 proteins, as well as increased release of glycosaminoglycans and aggrecan CS846 epitope, were observed when synovium was cocultured with meniscus. In end-stage OA cultures, increased levels of IL-8 and monocyte chemoattractant protein-1 (MCP-1) proteins were released in cocultures compared with cultures of meniscus alone. Chemokine (C-C motif) ligand 21 (CCL21) protein release was higher in meniscus cultured alone and in coculture compared with synovium cultured alone. Increased levels of MMP-3 and 10 proteins were observed when tissues were cocultured compared with meniscus cultured alone. Aggrecan CS846 epitope release was increased in cocultures compared with cultures of either tissue cultured alone. Our study showed the production of inflammatory molecules by synovium and meniscus which could trigger inflammatory signals in early OA patients, and induce ECM loss in the progressive and final stages of OA pathology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号