首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2010年   1篇
  2002年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A gynostemium, comprising stamen filaments adnate to a syncarpous style, occurs in only threc groups of monocots: the large family Orchidaceae (Asparagales) and two small genera Pauridia (Hypoxidaceae: Asparagales) and Corsia (Corsiaceae, probably in Liliales), all epigynous taxa. Pauridia has actinomorphic (polysymmetric) flowers, whereas those of Corsia and most orchids are strongly zygomorphic (monosymmetric) with a well-differentiated labellum. In Corsia the labellum is formed from the outer median tepal (sepal), whereas in orchids it is formed from the inner median tepal (petal) and is developmentally adaxial (but positionally abaxial in orchids with resupinate flowers). Furthermore, in orchids zygomorphy is also expressed in the stamen whorls, in contrast to Corsia. In Pauridia a complete stamen whorl is suppressed, but the 'lost' outer whorl is fused to the style. The evolution of adnation and zygomorphy are discussed in the context of the existing phylogenetic framework in monocotyledons. An arguably typological classification of floral terata is presented, focusing on three contrasting modes each of peloria and pseudopeloria. Dynamic evolutionary transitions in floral morphology are assigned to recently revised concepts of heterotopy (including homeosis) and heterochrony, seeking patterns that delimit developmental constraints and allow inferences regarding underlying genetic controls. Current evidence suggests that lateral heterotopy is more frequent than acropetal heterotopy, and that full basipetal heterotopy does not occur. Pseudopeloria is more likely to generate a radically altered yet functional perianth, but is also more likely to cause acropetal modification of the gynostemium. These comparisons indicate that there are at least two key genes or sets of genes controlling adnation, adaxial stamen suppression and labellum development in lilioid monocots; at least one is responsible for stamen adnation to the style (i.e. gynostemium formation), and another controls adaxial stamen suppression and adaxial labellum formation in orchids. Stamen adnation to the style may be a product of over-expression of the genes related to epigyny (i.e. a form of hyper-epigyny). If, as seems likely, stamen-style adnation preceded zygomorphy in orchid evolution, then the flowers of Pauridia may closely resemble those of the immediate ancestors of Orchidaceae, although existing molecular phylogenetic data indicate that a sister-group relationship is unlikely. The initial radiation in Orchidaceae can be attributed to the combination of hyper-epigyny, zygomorphy and resupination, but later radiations at lower taxonomic levels that generated the remarkable species richness of subfamilies Orchidoideae and Epidendroideae are more likely to reflect more subtle innovations that directly influence pollinator specificity, such as the development of stalked pollinaria and heavily marked and/or spur-bearing labella.  相似文献   
2.

Background and Aims

Synorganisation of floral organs, an important means in angiosperm flower evolution, is mostly realized by congenital or post-genital organ fusion. Intimate synorganisation of many floral organs without fusion, as present in Geranium robertianum, is poorly known and needs to be studied. Obdiplostemony, the seemingly reversed position of two stamen whorls, widely distributed in core eudicots, has been the subject of much attention, but there is confusion in the literature. Obdiplostemony occurs in Geranium and whether and how it is involved in this synorganisation is explored here.

Methods

Floral development and architecture were studied with light microscopy based on microtome section series and with scanning electron microscopy.

Key Results

Intimate synorganisation of floral organs is effected by the formation of five separate nectar canals for the proboscis of pollinators. Each nectar canal is formed by six adjacent organs from four organ whorls. In addition, the sepals are hooked together by the formation of longitudinal ribs and grooves, and provide a firm scaffold for the canals. Obdiplostemony provides a guide rail within each canal formed by the flanks of the antepetalous stamen filaments.

Conclusions

Intimate synorganisation in flowers can be realized without any fusion, and obdiplostemony may play a role in this synorganisation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号