首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  15篇
  2022年   2篇
  2017年   1篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2004年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
It has been recently hypothesized that in PIH a placental oxidant-antioxidant imbalance might cause the release of lipoperoxidation products into the circulation, with subsequent damage of endothelial cell membranes. In this hypothesis the endothelial cell and further increase in circulating lipoperoxide levels, which are by themselves able to induce smooth muscle constriction and increased pressor responsiveness to angiotensin II. In order to investigate this issue, we studied the basal content of lipid peroxides in terms of malondialdehyde (MDA) in the syncytiotrophoblast plasma membranes (SPM) from PIH women. Moreover, we investigated the susceptibility to peroxidation of SPM using anin vitro oxidative stress as a tool to verify the predisposition to thein vivo development of peroxidation products. The fatty acid composition of the membranes was also analyzed. Microvillus membrane lipoperoxide concentrations were significantly increased in PIH women (62.8±7.6 ng MDA/mg prot) compared with healthy pregnant subjects (37.6±4.8 ng MDA/mg prot; p<0.01).The formation of TBARS under the action of phenylhydrazine was significantly greater in PIH women (90.3±7.4 mmol MDA/mol cholesterol) than in normal pregnant subjects (68.6±6.4 mmol MDA/mol cholesterol; p<0.01). In PIH microvillus membrane we also observed a significant increase of the content of polyunsaturated arachidonic acid.The increased susceptibility to oxidative stress of SPMs from PIH women might be due either to reduced antioxidant systems or to an abnormality of the lipid composition of the membrane. The present work also demonstrated in PIH a reduction in the SPM content of saturated fatty acids with an increase in polyunsaturated fatty acids, which are the major substrate for peroxidation. On the other hand, the higher lipoperoxidation may be due to the observed increased susceptibility to peroxidative stress, to a primary reduction in placental perfusion with tissue hypoxia or to both factors, which can potentiate each other.  相似文献   
2.
3.
Maternal‐to‐fetal transfer of nutrient and other substances occurs across the placental barrier (PB) which is made up of endothelial cells (EC) on the fetal side and the syncytiotrophoblast (STB) on the maternal side. Numerous studies were conducted to explore the transport characteristics across the STB layer, which is also considered as the major resistance for maternal‐to‐fetal exchange of materials. In contrast the layer of EC has received very little attention if at all. A recently developed viable co‐culture model of the PB revealed significant resistance of the EC layer for maternal‐to‐fetal transfer of glucose. This argues for a major contribution of the EC to overall transplacental transfer of nutrients. Accordingly, it is recommended to fill the void of knowledge and expand our understanding on the role of the feto‐placental endothelium for transplacental transport characteristics.  相似文献   
4.
Chronic diseases pose a severe burden to modern National Health Systems. Individuals nowadays have a far more extended lifespan than in the past, but healthy living was only scantily extended. As much as longer life is desirable, it is saddened by chronic diseases and organ malfunctions. One contributor to these problems was recognized to be represented by microparticles (MPs). Our purpose is to better understand MPs, to contrast their ominous threat and possible clinical importance. For this intent we correlated MPs with thrombotic pathologies, hemophilia, malaria, diabetes, cardiovascular diseases, endothelial dysfunctions, pulmonary hypertension, ischemic stroke, pre-eclampsia, rheumatologic diseases-rheumatoid arthritis, polymyositis-dermatomyositis, angiogenesis and tumor progression-cancer; we listed the possibilities of using them to improve transfusion methods, as a marker for acute allograft rejection, in stem cell transplantation, as neuronal biomarkers, to understand gender-specific susceptibility for diseases and to improve vaccination methods and we presented some methods for the detection of MPs.  相似文献   
5.
The supply of nutrients to the developing fetus is a major function of the human hemochorial placenta, a placenta type in which the fetal chorion is in direct contact with the maternal blood. At term, nutrients have to be transported across two cell layers in chorionic villi, the syncytiotrophoblast (STB) and fetal endothelial cells. The STB is a continuous syncytium covering the entire surface of chorionic villi. This polarized epithelium is specialized in exchange processes and membrane trafficking between the apical membrane facing the maternal blood and the basal membrane facing the fetal endothelium. To meet placental and fetal requirements, the STB selectively takes up and transports a variety of nutrients, hormones, growth factors and cytokines and also transfers passive immunity to the fetus by receptor-mediated transcytosis. In this review in vivo and in vitro systems currently used to study STB functions are discussed and the potential mechanisms of transplacental IgG, iron, lipoprotein and glucose transport are presented. As revealed in this article, the placenta is a tissue where intensive cell biological research is required to unravel endocytic trafficking pathways in a highly specialized cell such as the STB.  相似文献   
6.

Background

STARD1 transports cholesterol into mitochondria of acutely regulated steroidogenic tissue. It has been suggested that STARD3 transports cholesterol in the human placenta, which does not express STARD1. STARD1 is proteolytically activated into a 30-kDa protein. However, the role of proteases in STARD3 modification in the human placenta has not been studied.

Methods

Progesterone determination and Western blot using anti-STARD3 antibodies showed that mitochondrial proteases cleave STARD3 into a 28-kDa fragment that stimulates progesterone synthesis in isolated syncytiotrophoblast mitochondria. Protease inhibitors decrease STARD3 transformation and steroidogenesis.

Results

STARD3 remained tightly bound to isolated syncytiotrophoblast mitochondria. Simultaneous to the increase in progesterone synthesis, STARD3 was proteolytically processed into four proteins, of which a 28-kDa protein was the most abundant. This protein stimulated mitochondrial progesterone production similarly to truncated-STARD3. Maximum levels of protease activity were observed at pH 7.5 and were sensitive to 1,10-phenanthroline, which inhibited steroidogenesis and STARD3 proteolytic cleavage. Addition of 22(R)-hydroxycholesterol increased progesterone synthesis, even in the presence of 1,10-phenanthroline, suggesting that proteolytic products might be involved in mitochondrial cholesterol transport.

Conclusion

Metalloproteases from human placental mitochondria are involved in steroidogenesis through the proteolytic activation of STARD3. 1,10-Phenanthroline inhibits STARD3 proteolytic cleavage. The 28-kDa protein and the amino terminal truncated-STARD3 stimulate steroidogenesis in a comparable rate, suggesting that both proteins share similar properties, probably the START domain that is involved in cholesterol binding.

General significance

Mitochondrial proteases are involved in syncytiotrophoblast-cell steroidogenesis regulation. Understanding STARD3 activation and its role in progesterone synthesis is crucial to getting insight into its action mechanism in healthy and diseased syncytiotrophoblast cells.  相似文献   
7.
Trophoblasts differentiate and form the placenta during pregnancy in a complex and finely orchestrated process, which is dependent on the establishment of maternal-fetal immune tolerance and the proper function of trophoblasts. Trophoblasts express HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G). Numerous studies have shown that the unique expression pattern of the HLA molecules is closely linked to the successful acceptance of allogeneic fetus by the mother during pregnancy. However, some controversies still exist concerning the exact expression and recognition patterns of HLA molecules in different trophoblast subpopulations and cell lines. Thus, we summarize three types of trophoblast subpopulations as well as the common trophoblast lineages. Then, the classification and structural characteristics of HLA molecules were elucidated. Finally, the presence of HLA-C and non-classical HLA-Ib molecules (HLA-E, HLA-F, and HLA-G) in various trophoblasts and cell lines, as well as their potential role in establishing and maintaining normal pregnancy were also discussed. Together, this review will help people comprehensively understand the complex immune interactions between maternal and fetal crosstalk during pregnancy and ultimately better understand the physiological and pathological etiologies of pregnancy.  相似文献   
8.
Preeclampsia (PE) is characterized by maternal hypertension, proteinuria, oedema and, in 30% of cases, by intrauterine growth retardation. Causes are still unknown; however, epidemiological and clinical studies have suggested alterations in maternal calcium metabolism. We suggested that in PE, calcium transport by the syncytiotrophoblast (ST) is disturbed. From total placental tissues, we studied the expression of: calcium channels (TRPV5, TRPV6 [transient receptor potential vanilloid]), calcium binding proteins (CaBP‐9K, CaBP‐28K), plasma membrane calcium ATPase (PMCA)1,2,3,4 pumps, ATP synthase, genes implicated in Ca2+ release [inositol‐1,4,5‐triphosphate receptor (IP3R)1,2,3; Ryanodine receptor (RyR)1,2,3] and replenishment (SERCA1,2,3 [sarcoendoplasmic reticulum Ca2+ ATPases]) from endoplasmic reticulum, channels implicated in mitochondrial Ca2+ accumulation (VDAC1,2,3 [voltage‐dependent anion channels]) and a marker of oxidative stress (hOGG1 [Human 8‐oxoguanine‐DNA glycosylase 1]), as well as the influence of these variations on calcium transport in primary ST cultures. The mRNA and protein levels were thereby examined by real‐time PCR and Western blot analysis, respectively, in two different groups of pregnant women with similar gestational age: a normal group (n= 16) and a PE group (n= 8), diagnosed by a clinician. Our study showed a significant decrease in calcium transport by the ST cultured from preeclamptic placentas. We found a significant (P < 0.05) decrease in mRNA levels of TRPV5, TRPV6, CaBP‐9K, CaBP‐28K, PMCA1, PMCA4, ATP synthase, IP3R1, IP3R2, RyR1, RyR2 and RyR3 in PE group compared to normal one. We also noted a significant decrease in protein levels of TRPV5, TRPV6, CaBP‐9K, CaBP‐28K and PMCA1/4 in PE group. In contrast, SERCA1, SERCA2, SERCA3, VDAC3 and hOGG1 mRNA expressions were significantly increased in PE placentas. Calcium homeostasis and transport through placenta is compromised in preeclamptic pregnancies and it appears to be affected by a lack of ATP and an excess of oxidative stress.  相似文献   
9.
10.
This investigation shows the effect of a Ca2+ addition on the structural and physicochemical properties of microvillus plasma membranes obtained from human placenta. Ca2+ addition induces an increase in microviscosity, as shown by the increase of order parameter and rotational correlation time of 5-and 16-doxylsterate derivatives and by the increase of fluorescence polarization of diphenylhexatriene. All the effects were obtained in a wide temperature range. The morphometric analysis of the ultrastructural images shows that the vesicle profiles of syncytiotrophoblast membranes decrease both area and form factor (FF) in the presence of Ca2+ with respect to the controls. The freeze-fracture results also show that Ca2+ induces an enhanced tendency to IMP clusterization. The Ca2+-induced changes were observed in both E and P faces. Our results underline the important role of Ca2+ in the cell membrane structure per se and in modulating interactions between cytoplasmic and extracellular microenvironments. The results of morphometric analysis of the ultrastructural images agree with biochemical data showing an increased stability induced by calcium on plasma membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号