首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17525篇
  免费   929篇
  国内免费   523篇
  18977篇
  2024年   31篇
  2023年   248篇
  2022年   388篇
  2021年   464篇
  2020年   423篇
  2019年   468篇
  2018年   501篇
  2017年   330篇
  2016年   342篇
  2015年   488篇
  2014年   697篇
  2013年   1020篇
  2012年   459篇
  2011年   579篇
  2010年   575篇
  2009年   652篇
  2008年   654篇
  2007年   717篇
  2006年   659篇
  2005年   604篇
  2004年   559篇
  2003年   532篇
  2002年   511篇
  2001年   393篇
  2000年   358篇
  1999年   318篇
  1998年   325篇
  1997年   303篇
  1996年   265篇
  1995年   342篇
  1994年   297篇
  1993年   312篇
  1992年   299篇
  1991年   262篇
  1990年   260篇
  1989年   278篇
  1988年   281篇
  1987年   255篇
  1986年   205篇
  1985年   261篇
  1984年   414篇
  1983年   294篇
  1982年   344篇
  1981年   271篇
  1980年   226篇
  1979年   214篇
  1978年   74篇
  1977年   58篇
  1976年   59篇
  1973年   34篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Abstract

The hepatitis C virus (HCV) encodes the p7 protein that oligomerizes to form an ion channel. The 63 amino acid long p7 monomer is an integral membrane protein predominantly found in the endoplasmic reticulum (ER). Although it is currently unknown whether p7 is incorporated into secreted virions, its presence is crucial for the release of infectious virus. The molecular and biophysical mechanism employed by the p7 ion channel is largely unknown, but in vivo it is likely to be embedded in membranes undergoing changes in lipid composition. In this study we analyze the influence of the lipid environment on p7 ion channel structure and function using electrophysiology and synchrotron radiation circular dichroism (SRCD) spectroscopy. We incorporated chemically synthesized p7 polypeptides into artificial planar membranes of various lipid compositions. A lipid bilayer composition comprising phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (4:1 PC:PE) led to burst-like patterns in the channel recordings with channel openings lasting up to 0.5 s. The reverse ratio of PC:PE (1:4) gave rise to individual channels continuously opening for up to 8 s. SRCD spectroscopy of p7 embedded into liposomes of corresponding lipid compositions suggests there is a structural effect of the lipid composition on the p7 protein.  相似文献   
2.
Binding of the cationic tetra(tributylammoniomethyl)-substituted hydroxoaluminum phthalocyanine (AlPcN4) to bilayer lipid membranes was studied by fluorescence correlation spectroscopy (FCS) and intramembrane field compensation (IFC) methods. With neutral phosphatidylcholine membranes, AlPcN4 appeared to bind more effectively than the negatively charged tetrasulfonated aluminum phthalocyanine (AlPcS4), which was attributed to the enhancement of the coordination interaction of aluminum with the phosphate moiety of phosphatidylcholine by the electric field created by positively charged groups of AlPcN4. The inhibitory effect of fluoride ions on the membrane binding of both AlPcN4 and AlPcS4 supported the essential role of aluminum-phosphate coordination in the interaction of these phthalocyanines with phospholipids. The presence of negative or positive charges on the surface of lipid membranes modulated the binding of AlPcN4 and AlPcS4 in accord with the character (attraction or repulsion) of the electrostatic interaction, thus showing the significant contribution of the latter to the phthalocyanine adsorption on lipid bilayers. The data on the photodynamic activity of AlPcN4 and AlPcS4 as measured by sensitized photoinactivation of gramicidin channels in bilayer lipid membranes correlated well with the binding data obtained by FCS and IFC techniques. The reduced photodynamic activity of AlPcN4 with neutral membranes violating this correlation was attributed to the concentration quenching of singlet excited states as proved by the data on the AlPcN4 fluorescence quenching.  相似文献   
3.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
4.
Kinetic parameters of 3-(3, 4-dichlorophenyl)-1, 1-dimethyl urea (DCMU)-induced inhibition of electron transport in chloroplast thylakoids isolated from Phaseolus vulgaris L. cv. Oregon 1604 were determined from analysis of a convergent, parallel electrical circuit. Through this analogue, the apparent affinity of the purported binding site for DCMU (K1) and the relative amount of DCMU-insensitive electron transport (vmax1/vo) were obtained using a reiterative non-linear least squares curve-fitting procedure. Exposure of thylakoids to heat caused a gradual increase in K1 (or decrease in the affinity of the thylakoid for DCMU) with an apparent activation energy of 134 kJ mol−1. Tryptic susceptibility of a protein region regulating K1 also decreased gradually with exposure to 45°C, suggesting that the heat-induced increase in K1 might be due to a protein conformational change. On the other hand, thylakoid exposure to 45°C resulted in a rapid (<5 min) irreversible increase in vmaxI/vo, which was also the apparent result of a conformational change in a region of the protein which regulates this function. These results are suggestive of the existence of differential thermal sensitivities of proteins within the thylakoids and, perhaps, of different regions within a single membrane protein.  相似文献   
5.
Y. Avi-Dor  R. Rott  R. Schnaiderman 《BBA》1979,545(1):15-23
The interrelation was studied between the phototransient absorbing maximally at 412 nm (M412) and light-induced proton release under steady-state conditions in aqueous suspensions of ‘purple membrane’ derived from Halobacterium halobium. The decay of M412 was slowed down by the simultaneous application of the ionophoric antibiotics valinomycin and beauvericin. The former had only slight activity alone and the latter was effective only in conjunction with valinomycin. The steady-state concentration of M412 which was formed on illumination was a direct function of the concentration of valinomycin. Maximum stabilization of M412 was obtained when the valinomycin was approximately equimolar with the bacteriorhodopsin. Addition of salts to the medium increased the number of protons released per molecule of M412 without affecting the level of M412 which was produced by continuous illumination. The effectiveness of the salts in this respect depended on the nature of the cation. Ca2+ and their antagonists La3+ and ruthenium red were found to have especially high affinity for the system. The extent of light-induced acidification could not be enhanced by increasing the pH of the medium from 6.5 to 7.8. The possible mechanism of action of the ionophores and of the cations on the photocycle and on the proton cycle is discussed.  相似文献   
6.
《Cell reports》2020,30(4):1129-1140.e5
  1. Download : Download high-res image (253KB)
  2. Download : Download full-size image
  相似文献   
7.
Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (∼ 90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon’s plot; however, the inhibition mechanism of endometase was noncompetitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.  相似文献   
8.
9.
10.
Intestinal cholesterol absorption is specifically inhibited by the 2-azetidinone cholesterol absorption inhibitor ezetimibe. Photoreactive ezetimibe analogues specifically label a 145-kDa protein in the brush border membrane of enterocytes from rabbit small intestine identified as aminopeptidase N (CD13). In zebrafish and mouse small intestinal cytosol, a heterocomplex of Mr 52 kDa between annexin II and caveolin 1 was suggested as a target of ezetimibe. In contrast, in the cytosol and brush border membrane vesicles (BBMV) from rabbit small intestine of control animals or rabbits treated with the nonabsorbable cholesterol absorption inhibitor AVE 5530, both annexin II and caveolin 1 were exclusively present as monomers without any heterocomplex formation. Upon immunoprecipitation with annexin II a 52-kDa band was observed after immunostaining with annexin II antibodies, whereas no staining of a 52-kDa band occurred with anti-caveolin 1 antibodies. Vice versa, a 52-kDa band obtained by immunoprecipitation with caveolin 1 antibodies did not stain with annexin II-antibodies. The intensity of the 52-kDa band was dependent on the amount of antibody and was also observed with anti-actin or anti-APN antibodies suggesting that the 52-kDa band is a biochemical artefact. After incubation of cytosol or BBMV with radioactively labelled ezetimibe analogues, no significant amounts of the ezetimibe analogues could be detected in the immunoprecipitate with caveolin-1 or annexin II antibodies. Photoaffinity labelling of rabbit small intestinal BBMV with ezetimibe analogues did not result in labelling of proteins being immunoreactive with annexin II, caveolin 1 or a 52-kDa heterocomplex. These findings indicate that the rabbit small intestine does not contain an annexin II/caveolin 1 heterocomplex as a target for ezetimibe.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号