首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
  2022年   1篇
  2016年   1篇
  2013年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
Palaeopropithecids, or “sloth lemurs,” are a diverse clade of large‐bodied Malagasy subfossil primates characterized by their inferred suspensory positional behavior. The most recently discovered genus of the palaeopropithecids is Babakotia, and it has been described as more arboreal than Mesopropithecus, but less than Palaeopropithecus. In this article, the within‐bone and between‐bones articular and cross‐sectional diaphyseal proportions of the humerus and femur of Babakotia were compared to extant lemurs, Mesopropithecus and Palaeopropithecus in order to further understand its arboreal adaptations. Additionally, a sample of apes and sloths (Choloepus and Bradypus) are included as functional outgroups composed of suspensory adapted primates and non‐primates. Results show that Babakotia and Mesopropithecus both have high humeral/femoral shaft strength proportions, similar to extant great apes and sloths and indicative of forelimb suspensory behavior, with Babakotia more extreme in this regard. All three subfossil taxa have relatively large femoral heads, also associated with suspension in modern taxa. However, Babakotia and Mesopropithecus (but not Palaeopropithecus) have relatively small femoral head surface area to shaft strength proportions suggesting that hind‐limb positioning in these taxa during climbing and other behaviors was different than in extant great apes, involving less mobility. Knee and humeral articular dimensions relative to shaft strengths are small in Babakotia and Mesopropithecus, similar to those found in modern sloths and divergent from those in extant great apes and lemurs, suggesting more sloth‐like use of these joints during locomotion. Mesopropithecus and Babakotia are more similar to Choloepus in humerofemoral head and length proportions while Palaeopropithecus is more similar to Bradypus. These results provide further evidence of the suspensory adaptations of Babakotia and further highlight similarities to both extant suspensory primates and non‐primate slow arboreal climbers and hangers. J. Morphol. 277:1199–1218, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
2.
Primate fossil assemblages often have metacarpals and phalanges from which functional/behavioral interpretations may be inferred. For example, intrinsic hand proportions can indicate hand function and substrate use. But, estimates of intrinsic hand proportions from unassociated hand elements can be imperfect due to digit misattribution. Although isolated metacarpals can be identified to a specific digit, phalanges are difficult to assign to a specific ray. We used a resampling approach to evaluate how estimates of intrinsic hand proportions are affected by such uncertainty. First, the phalangeal index—intermediate phalanx length plus proximal phalanx length divided by metacarpal length—for the third digit was calculated for associated specimens of terrestrial, semiterrestrial, and arboreal taxa. We then used resampling procedures to generate distributions of “composite digits” based on resampled ratios in which phalanges from the second, fourth, and fifth rays, and from different individuals, were chosen randomly. Results confirm that the phalangeal index for associated third digits significantly discriminates groups. We also found that resampled ratios had significantly lower means, indicating that using composite digits is prone to systematic underestimation. Resampled ratios also generated distributions with greater variance around the means that obscured distinctions between groups, although significant differences between the most arboreal and terrestrial taxa are maintained. We conclude that using unassociated phalanges to calculate a phalangeal index is prone to sampling bias. Nevertheless, a resampling approach has the potential to inform estimates of hand proportions for fossil taxa, provided that the comparative sample is constrained to mimic the fossil composition. Am J Phys Anthropol 151:280–289, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
3.
Vertebrate morphologists often are interested in inferring limb-loading patterns in animals characterized by different locomotor repertoires. Because bone apparent density (i.e. mass per unit volume of bone inclusive of porosities) is a determinant of compressive strength, and thus indicative of compressive loading, recent comparative studies in primates have proposed a structure-function relationship between apparent density of subchondral bone and locomotor behaviours that vary in compressive loading. If such patterns are found in other mammals, then these relationships would be strengthened further. Here, we examine the distal radius of suspensory sloths that generally load their forelimbs (FLs) in tension and of quadrupedal anteaters that generally load their FLs in compression. Computed tomography osteoabsorptiometry was used to visualize the patterns in subchondral apparent density. Suspensory sloths exhibit relatively smaller areas of high apparent density than quadrupedal anteaters. This locomotor-based pattern is analogous to the pattern observed in suspensory and quadrupedal primates. Similarity between xenarthran and primate trends suggests broad-scale applicability for analysing subchondral bone apparent density and supports the idea that bone functionally alters its material properties in response to locomotor behaviours.  相似文献   
4.
We studied the forelimb interosseus muscle in horses, Equus caballus, to determine the muscular properties inherent in its function. Some authors have speculated that the equine interosseus contains muscle fibers at birth only to undergo loss of these fibers through postnatal ontogeny. We describe the muscle fibers in eight interosseus specimens from adult horses. These fibers were studied histochemically using myosin ATPase studies and immunocytochemically using several antibodies directed against type I and type II myosin heavy chain antibodies. We determined that 95% of the fibers were type I, presumed slow-twitch fibers. All fibers exhibited normal morphological appearance in terms of fiber diameter and cross-sectional area, suggesting that the muscles are undergoing normal cycles of recruitment. SDS-PAGE studies of myosin heavy chain isoforms were consistent with these observations of primarily slow-twitch muscle. Fibers were determined to be approximately 800 microm long when studied using nitric acid digestion protocols. Short fiber length combined with high pinnation angles suggest that the interosseus muscle is able to generate large amounts of force but can produce little work (measured as pulling the distal tendon proximally). While the equine interosseus muscle has undergone a general reduction of muscle content during its evolution, it remains composed of a significant muscular component that likely contributes to forelimb stability and elastic storage of energy during locomotion.  相似文献   
5.
Current approaches to quantify phalangeal curvature assume that the long axis of the bone's diaphysis approximates the shape of a portion of a circle (included angle method) or a parabola (second-degree polynomial method). Here we developed, tested, and employed an alternative geometric morphometrics-based (GM) approach to quantify diaphysis shape of proximal phalanges in humans, apes and monkeys with diverse locomotor behaviors. One hundred landmarks of the central longitudinal axis were extracted from 3D surface models and analyzed using 2DGM methods, including generalized Procrustes analyses. Principal components analyses were performed and PC1 scores (>80% of variation) represented the dorsopalmar shape of the bone's central longitudinal axis and separated taxa consistently and in accord with known locomotor behavioral profiles. The most suspensory taxa, including orangutans, hylobatids and spider monkeys, had significantly lower PC1 scores reflecting the greatest amounts of phalangeal curvature. In contrast, bipedal humans and the quadrupedal cercopithecoid monkeys sampled (baboons, proboscis monkeys) exhibited significantly higher PC1 scores reflecting flatter phalanges. African ape (gorillas, chimpanzees and bonobos) phalanges fell between these two extremes and were not significantly different from each other. PC1 scores were significantly correlated with both included angle and the a coefficient of a second-degree polynomial calculated from the same landmark dataset, but had a significantly higher correlation with included angles. Our alternative approach for quantifying diaphysis shape of proximal phalanges to investigate dorsopalmar curvature is replicable and does not assume a priori either a circle or parabola model of shape, making it an attractive alternative compared with existing methodologies.  相似文献   
6.
Given the predominance of brachiation and other forms of suspension in gibbon locomotion, we compared the locomotor, postural, and manipulative behaviors of a captive, juvenile, one‐armed gibbon to the behavioral profiles of his family members. We expected Kien Nahn, whose arm was amputated in response to an untreatable injury approximately 1 year before observations began, to avoid suspensory locomotion, to spend more time immobile, and to be less likely to exhibit postures involving forelimb suspension. Data were collected using scan sampling to record the behaviors and postures of Kien Nahn, his younger brother, and his parents. Additional postural and manipulative behaviors were recorded ad lib. Kien Nahn and his younger sibling had similar activity levels, and although differences in postural profiles existed, they were surprisingly few. Specifically, Kien Nahn spent significantly less time in motion and in non‐suspensory forms of locomotion than his brother. When compared to his parents, Kien Nahn was found to be both active and in motion more often, but was less likely to exhibit the forelimb suspension posture. Despite the increased energetic demands associated with one‐armed brachiation, Kien Nahn preferred suspensory locomotion to other forms of locomotion. Furthermore, he found unique solutions for foraging and locomoting, often making use of his feet and teeth, and he was generally the first to approach and manipulate enrichment objects. We found no evidence to suggest that Kien Nahn's injury has altered his activity levels. Although the one‐armed gibbon displayed slightly different locomotor, postural, and manipulative behaviors than his family members, he seems to have adapted well to his injury. Zoo Biol 0:1–8, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   
7.
Recent studies at the Endangered Primate Rescue Center (EPRC) in the Socialist Republic of Vietnam's Cuc Phuong National Park by Byron et al. ([2002] Am. J. Phys. Anthropol. [Suppl.] 34:51) and Covert and Byron ([2002] Caring for Primates) revealed unexpected locomotor and postural behaviors in the red-shanked douc langur (Pygathrix nemaeus). This paper further elucidates the question of red-shanked douc suspensory behavior, and provides initial positional behavior data for two other rare Asian colobines, by comparing the ontogenetic positional behavior of red-shanked douc langurs, Delacour's langurs (Trachypithecus delacouri), and Hatinh langurs (Trachypithecus hatinhensis) at the EPRC. Two hundred and seven hours of positional behavior data were collected, with approximately equal amounts of data on each species, and equal amounts on adults and those less than 18 months in age. All young animals were more active than adults, used a wider repertoire of locomotor behaviors, and expressed suspensory behaviors more frequently than did the adults. Young animals also "invented" one new locomotor and two new postural behaviors. These differences are due to both play and explorative behavior, as well as to the youths' changing musculoskeletal systems. The number of positional behaviors utilized by the adults of these species is quite similar to one another (23-32), as is that utilized by the young (51-56). Douc langurs in both age categories used suspensory behaviors more frequently than did Delacour's and Hatinh langurs. Because the uniformity of enclosures offers a control, the results of this study generate hypotheses regarding adaptive radiations and niche partitioning in wild populations.  相似文献   
8.
Abstract. The largest extant species of the adventitious tube-building Clavagelloidea has hitherto been placed in the genus Foegia (itself formerly a subgenus of Brechites ), the type species of which is the Western Australian F. novaezelandiae (B ruguiére 1792). Following examinations of and comparison with F. novaezelandiae and the southern Australian F. veitchi , the latter is herein placed in its own new genus Kendrickiana .
Individuals of both F. novaezelandiae and K. veitchi are essentially amyarian in terms of adductor and pedal retractor muscles, but in the latter species the connection to the adventitious tube is located dorsally by an unique horseshoe-shaped array of muscular papillae, which are inserted into holes in the tube. K. veitchi is different from other clavagelloids too in that the siphons are capable of only limited retraction into the tube. Their extension in K. veitchi is almost exclusively by hydraulic means because the complex internal siphonal muscles seen in other species of the Clavagelloidea, and which act antagonistically with extensive blood-filled haemocoels, are vestigial. Kendrickiana can also be separated from Foegia in other anatomical respects. For example, members of the former have paired anterior suspensory muscles, and vestigial posterior pedal retractor muscles with pericardial proprioreceptors associated with them (as in Humphreyia and Dianadema ), whereas the latter does not. Similarly, in Foegia there is a muscularized pedal disc, not found in Kendrickiana . Members of F. novaezelandiae are inhabitants of intertidal hypoxic muds, whereas those of K. veitchi apparently live exclusively in subtidal sea grass beds.  相似文献   
9.
Primates use a range of locomotor modes during which they incorporate various foot postures. Humans are unique compared with other primates in that humans lack a mobile fore‐ and midfoot. Rigidity in the human foot is often attributed to increased propulsive and stability requirements during bipedalism. Conversely, fore‐ and midfoot mobility in nonhuman primates facilitates locomotion in arboreal settings. Here, we evaluated apparent density (AD) in the subchondral bone of human, ape, and monkey calcanei exhibiting different types of foot loading. We used computed tomography osteoabsorptiometry and maximum intensity projection (MIP) maps to visualize AD in subchondral bone at the cuboid articular surface of calcanei. MIPs represent 3D volumes (of subchondral bone) condensed into 2D images by extracting AD maxima from columns of voxels comprising the volumes. False‐color maps are assigned to MIPs by binning pixels in the 2D images according to brightness values. We compared quantities and distributions of AD pixels in the highest bin to test predictions relating AD patterns to habitual locomotor modes and foot posture categories of humans and several nonhuman primates. Nonhuman primates exhibit dorsally positioned high AD concentrations, where maximum compressive loading between the calcaneus and cuboid likely occurs during “midtarsal break” of support. Humans exhibit less widespread areas of high AD, which could reflect reduced fore‐ and midfoot mobility. Analysis of the internal morphology of the tarsus, such as subchondral bone AD, potentially offers new insights for evaluating primate foot function during locomotion. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号