首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2071篇
  免费   220篇
  国内免费   240篇
  2531篇
  2024年   33篇
  2023年   126篇
  2022年   206篇
  2021年   217篇
  2020年   234篇
  2019年   238篇
  2018年   166篇
  2017年   156篇
  2016年   82篇
  2015年   94篇
  2014年   124篇
  2013年   122篇
  2012年   62篇
  2011年   88篇
  2010年   47篇
  2009年   65篇
  2008年   53篇
  2007年   62篇
  2006年   53篇
  2005年   33篇
  2004年   36篇
  2003年   28篇
  2002年   24篇
  2001年   16篇
  2000年   10篇
  1999年   12篇
  1998年   11篇
  1997年   12篇
  1996年   9篇
  1995年   9篇
  1994年   7篇
  1993年   8篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   2篇
  1988年   8篇
  1987年   2篇
  1986年   1篇
  1985年   12篇
  1984年   7篇
  1983年   8篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
排序方式: 共有2531条查询结果,搜索用时 0 毫秒
1.
2.
Spinach plants (Spinacea oleracea L. cv. Estivato) were grown on nutrient solutions under deficient, normal and excess sulfate supply. In both young and mature plants net uptake of sulfate and its transport to the shoot increased with increasing sulfate supply, but both processes proceeded at a higher rate in young as compared to mature plants. The relative sulfate transport, i.e. the relative amount of the sulfate taken up that is transported to the shoot, decreased with increasing sulfate supply. Apparently, net uptake of sulfate is not strictly controlled by the sulfur demand of the shoot, but xylem loading appears to counteract excess transport of sulfate to the shoot. Fumigation with H2S or SO2 reduced net uptake of sulfate by the roots in sulfur-deficient plants and absolute as well as relative sulfate transport to the shoot independent of the three sulfate levels supplied to the plant. At the same time thiol contents of the shoot and the root were enhanced by fumigation with H2S and SO2. These findings are consistent with the idea that thiols produced in the leaves can mediate demand-driven control of sulfate uptake by the roots and its transport to the shoot.  相似文献   
3.
【目的】葡聚糖酶是饲用添加剂的重要成分,本研究旨在从湖羊消化道微生物中挖掘性质优良的GH9家族葡聚糖酶基因,用于研发新型饲用酶制剂。【方法】从湖羊瘤胃微生物cDNA中扩增IDSGLUC9-25基因,在大肠杆菌中进行异源表达,对重组蛋白进行诱导表达和纯化,研究重组蛋白的酶学性质和底物水解模式。【结果】IDSGLUC9-25基因编码527个氨基酸,包含一个CelD_N结构和一个GH9家族催化结构域;重组蛋白rIDSGLUC9-25分子量约为62.7 kDa,最适反应温度和pH分别为40℃和6.0,在30-50℃下活性较高,在pH 4.0-8.0范围内能够保持较高的稳定性,经pH 4.0-8.0缓冲液处理1 h后残余活性均大于90%;底物谱分析表明,rIDSGLUC9-25能催化大麦β-葡聚糖、苔藓地衣多糖、魔芋胶和木葡聚糖,比活性分别为(443.55±24.48)、(65.56±5.98)、(122.37±2.85)和(159.16±7.73) U/mg;利用薄层色谱法(thin layer chromatography, TLC)和高效液相色谱法(high performance liquid chromatography, HPLC)分析水解产物发现,rIDSGLUC9-25降解大麦葡聚糖主要生成纤维三糖(占总还原糖64.19%±1.19%)和纤维四糖(占总还原糖26.24%±0.12%),催化地衣多糖主要生成纤维三糖(占总还原糖78.46%±0.89%)。【结论】本研究报道了一种来自密螺旋体属细菌的内切β-1,4-葡聚糖酶IDSGLUC9-25 (EC 3.2.1.4),能高效催化多糖底物生成纤维三糖和纤维四糖,为研发饲用酶制剂和制备低聚寡糖建立基础。  相似文献   
4.
Greigite (Fe3S4) and pyrite (FeS2) particles in the magnetosomes of a many-celled, magnetotactic prokaryote (MMP), common in brackish-to-marine, sulfidic, aquatic habitats, contained relatively high concentrations of copper which ranged from about 0.1 to 10 atomic per cent relative to iron. In contrast, the greigite particles in the magnetosomes of a curved magnetotactic bacterium collected from the same sampling site did not contain significant levels of copper. The ability of the MMP to biomineralize copper within its magnetosomes appeared to be limited to that organism and dependent upon the site from which it was collected. Although the chemical mechanism and physiological function of copper accumulation in the magnetosomes of the MMP is unclear, the presence of copper is the first evidence that another transition metal ion could be incorporated in the mineral phase of the magnetosomes of a magnetotactic bacterium.Abbreviation MMP many-celled magnetotactic prokaryote  相似文献   
5.
Summary Plants and certain fungi respond to heavy metal toxicity with the induced synthesis of metal-binding peptides known as phytochelatins (PCs). With cadmium, PCs can bind the metal to form a low molecular weight PC-Cd complex and a high molecular weight PC-Cd-S2− complex. The sulfide ions enhance the stability and Cd-binding capacity of the metal chelate, and formation of this sulfide-containing complex is associated with enhanced tolerance to cadmium. Molecular analyses of two fission yeast mutants that fail to produce a wild type level of the PC-Cd-S2− complex have determined that a vacuolar membrane transporter and several enzymes of the purine biosynthesis pathway are necessary in vivo for formation of the PC- Cd-S2− complex. A model based on vacuolar sequestration of the PC-Cd complex by an ATP-binding cassette-type transporter and its subsequent maturation into the stable PC-Cd-S2− complex via the actions of two purine biosynthetic enzymes is described. Presented in the Session-in-Depth Bioremediation through Biotechnological Means at the 1993 Congress on Cell and Tissue Culture, San Diego, CA, June 5–9, 1993.  相似文献   
6.
Virgin cores and production fluids were obtained from seven wells, ranging in depth from 805 ft to 14 492 ft, and examined for the presence of sulfate-reducing bacteria (SRB) using Rosenfeld's sulfate-reducing medium modified by using crude oil in place of lactate. Cores from an additional six wells, ranging in depth from 1160 ft to 13 337 ft were tested for SRB using the modified Rosenfeld medium and API-sulfate-reducing medium. Produced waters from five of the six wells were tested also. All of the eleven produced water samples were positive for SRB while H2S production was not detected from the core samples.  相似文献   
7.
Klebsiella aerogenes forms electron-dense partieles on the cell surface in response to the presence of cadmium ions in the growth medium. These particles ranged from 20 to 200 nm in size, and quantitative energy dispersive X-ray analysis established that they comprise cadmium and sulfur in a 1:1 ratio. This observation leads to the conclusion that the particles are cadmium sulfide crystallites. A combination of atomic absorption spectroscopy, inductively coupled plasma mass spectrometry, and acid-labile sulfide analysis revealed that the total intracellular and bound extracellular cadmium:sulfur ratio is also 1:1, which suggests that the bulk of the cadmium is fixed as extracellular cadmium sulfide. The tolerance of K. acrogenes to cadmium ions and the formation of the cadmium sulfide crystallites were dependent on the buffer composition of the growth medium. The addition of cadmium ions to phosphate-buffered media resulted in cadmium phosphate precipitates that remove the potentially toxic cadmium ions from the growth medium. Electrondense particles formed on the surfaces of bacteria grown under these conditions were a combination of cadmium sulfide and cadmium phosphates. The specific bacterial growth rate in the exponential phase of batch cultures was not affected by up to 2mM cadmium in Tricine-buffered medium, but formation of cadmium sulfide crystallites was maximal during the stationary phase of batch culture. Cadmium tolerance was much lower (10 to 150 M) in growth media buffered with Tris, Bistris propane, Bes, Tes, or Hepes. These results illustrate the importance of considering medium composition when comparing levels of bacterial cadmium tolerance.Abbreviations EDXA Energy dispersive X-ray analysis - AAS Atomic absorption spectroscopy - TEM Transmission electron microscopy - SEM Scanning electron microscopy - ICP-MS Inductively coupled plasma mass spectrometry - ALSA Acid-labile sulfide analysis  相似文献   
8.
A new phototrophic bacterium was isolated from Jordanian and Kenyan alkaline salt lakes. Cells are rod shaped, 1.5 m wide and 2–4 m long, and motile by polar flagella. They divide by binary fission, and possess photosynthetic membranes as lamellar stacks similar to those in the other species of the genus Ectothiorhodospira and the brown colored Rhodospirillum species. The presence of bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series is indicated by the absorption spectra of living cells. Under certain growth conditions the cells form gas vacuoles, may become immotile and float to the top of the culture medium. Sulfide and thiosulfate are used as photosynthetic electron donors. During the oxidation of sulfide to sulfate, elemental sulfur is formed, which is accumulated outside the cells. The organisms are strictly anaerobic, do not require vitamins, are moderately halophilic and need alkaline pH-values for growth. The new species Ectothiorhodospira vacuolata is proposed.  相似文献   
9.
Effect of hydrogen sulfide on growth of sulfate reducing bacteria   总被引:20,自引:0,他引:20  
A culture of sulfate reducing bacteria (SRB) growing on lactate and sulfate was incubated at different pH values in the range of 5.8-7.0. The effect of pH on growth rate was determined in this pH range; the highest growth rate was observed at pH 6.7. Hydrogen sulfide produced from sulfate reduction was found to have a direct and reversible toxicity effect on the SRB. A hydrogen sulfide Concentration of 547 mg/L (16.1 mM) completely inhibited the culture growth. Comparison between acetic acid and hydrogen sulfide inhibition is presented and the concomitant inhibition kinetics are mathematically described. (c) 1992 John Wiley & Sons, Inc.  相似文献   
10.
Plant-induced changes in the redox potentials of rice rhizospheres   总被引:3,自引:0,他引:3  
Redox potentials in microsites of the rhizosphere of flooded rice were continuously measured for several days. Close to the root tips redox potential markedly increased. The highest increase was measured in the rhizosphere of the tips of short lateral roots. Aerobic redox conditions were reached there, except in a very strongly reduced soil. Both the extension of the oxidation zone around the root tips and the maximum redox potential reached were influenced by the reducing capacity of the soil. The radius of the redox rhizosphere varied from less than 1 mm in a strongly reduced soil up to 4 mm in a weakly reduced one. The root-induced oxidation processes in the rhizosphere depended on the atmospheric oxygen supply to the roots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号