首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   5篇
  国内免费   31篇
  176篇
  2024年   2篇
  2022年   12篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   6篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   20篇
  2012年   7篇
  2011年   4篇
  2010年   3篇
  2009年   10篇
  2008年   5篇
  2007年   10篇
  2006年   18篇
  2005年   4篇
  2004年   5篇
  2003年   4篇
  2002年   9篇
  2001年   4篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   4篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有176条查询结果,搜索用时 15 毫秒
1.
The sodium ion gradient and the membrane potential were found to be the driving forces of sulfate accumulation in the marine sulfate reducer Desulfovibrio salexigens. The protonmotive force of –158 mV, determined by means of radiolabelled membrane-permeant probes, consisted of a membrane potential of –140 mV and a pH gradient (inside alkaline) of 0.3 at neutral pHout. The sodium ion gradient, as measured with silicone oil centrifugation and atomic absorption spectroscopy, was eightfold ([Na+]out/[Na+]in) at an external Na+ concentration of 320 mM. The resulting sodium ionmotive force was –194 mV and enabled D. salexigens to accumulate sulfate 20000-fold at low external sulfate concentrations (<0.1 M). Under these conditions high sulfate accumulation occurred electrogenically in symport with three sodium ions (assuming equilibrium with the sodium ion-motive force). With increasing external sulfate concentrations sulfate accumulation decreased sharply, and a second, low-accumulating system symported sulfate electroneutrally with two sodium ions. The sodium-ion gradient was built up by electrogenic Na+/H+ antiport. This was demonstrated by (i) measuring proton translocation upon sodium ion pulses, (ii) studying uptake of sodium salts in the presence or absence of the electrical membrane potential, and (iii) the inhibitory effect of the Na+/H+ antiport inhibitor propylbenzilylcholin-mustard HCl (PrBCM). With resting cells ATP synthesis was found after proton pulses (changing the pH by three units), but neither after pulses of 500 mM sodium ions, nor in the presence of the uncoupler tetrachorosalicylanilide (TCS). It is concluded that the energy metabolism of the marine strain D. salexigens is based primarily on the protonmotive force and a protontranslocating ATPase.Abbreviations MOPS morpholinopropanesulfonic acid - TCS tetrachlorosalicylanilide - PrBCM propylbenzilylcholin-mustard HCl - Tris tris(hydroxymethyl)aminomethane - TPP+ bromide tetraphenylphosphonium bromide  相似文献   
2.
Dimethylsulfoniopropionate, an osmolyte of marine algae, is thought to be the major precursor of dimethyl sulfide, which plays a dominant role in biogenic sulfur emission. The marine sulfate-reducing bacterium Desulfobacterium strain PM4 was found to degrade dimethylsulfoniopropionate to 3-S-methylmercaptopropionate. The oxidation of one of the methyl groups of dimethylsulfoniopropionate was coupled to the reduction of sulfate; this process is similar to the degradation betaine to dimethylglycine which was described earlier for the same strain. Desulfobacterium PM4 is the first example of an anaerobic marine bacterium that is able to demethylate dimethylsulfoniopropionate.Abbreviations DMSP dimethylsulfoniopropionate - DMS dimethyl sulfide - MMPA 3-S-methylmercaptopropionate  相似文献   
3.
Virgin cores and production fluids were obtained from seven wells, ranging in depth from 805 ft to 14 492 ft, and examined for the presence of sulfate-reducing bacteria (SRB) using Rosenfeld's sulfate-reducing medium modified by using crude oil in place of lactate. Cores from an additional six wells, ranging in depth from 1160 ft to 13 337 ft were tested for SRB using the modified Rosenfeld medium and API-sulfate-reducing medium. Produced waters from five of the six wells were tested also. All of the eleven produced water samples were positive for SRB while H2S production was not detected from the core samples.  相似文献   
4.
This study focused on the physiological, chemotaxonomic, and genotypic characteristics of two thermophilic spore-forming sulfate-reducing bacterial strains, 435T and 781, of which the former has previously been assigned to the subspecies “Desulfotomaculum nigrificans subsp. salinus”. Both strains reduced sulfate with the resulting production of H2S on media supplemented with H2 + CO2, formate, lactate, pyruvate, malate, fumarate, succinate, methanol, ethanol, propanol, butanol, butyrate, valerate, or palmitate. Lactate oxidation resulted in acetate accumulation; butyrate was oxidized completely, with acetate as an intermediate product. Growth on acetate was slow and weak. Sulfate, sulfite, thiosulfate, and elemental sulfur, but not nitrate, served as electron acceptors for growth with lactate. The bacteria performed dismutation of thiosulfate to sulfate and hydrogen sulfide. In the absence of sulfate, pyruvate but not lactate was fermented. Cytochromes of b and c types were present. The temperature and pH optima for both strains were 60–6°C and pH 7.0. Bacteria grew at 0 to 4.5–6.0% NaCl in the medium, with the optimum being at 0.5–1.0%. Phylogenetic analysis based on a comparison of incomplete 16S rRNA sequences revealed that both strains belonged to the C cluster of the genus Desulfotomaculum, exhibiting 95.5–98.3% homology with the previously described species. The level of DNA–DNA hybridization of strains 435T and 781 with each other was 97%, while that with closely related species D. kuznetsovii 17T was 51–52%. Based on the phenotypic and genotypic properties of strains 435T and 781, it is suggested that they be assigned to a new species: Desulfotomaculum salinum sp. nov., comb. nov. (type strain 435T = VKM B 1492T).  相似文献   
5.
【背景】含硫煤矿开采后,地表水/地下水回流至采空区形成酸性老窑水,含有高浓度重金属离子和硫酸盐,严重危害生态系统健康。利用微生物自身生长处理老窑水具有成本低、环境友好等特点,具有良好的应用前景。目前利用的硫酸盐还原菌大多只在适宜温度和中性pH条件下具有较高活性,在北方低温和酸性条件下难以发挥作用。【目的】本研究旨在从山西阳泉山底河流域的老窑水环境中分离硫酸盐还原菌,并调节温度和pH进行驯化,从而得到高效耐低温耐酸菌株,为北方老窑水微生物治理提供可用菌种资源。【方法】对山底河流域典型老窑水样品中的微生物进行富集培养,并筛选硫酸盐还原菌。通过革兰氏染色、扫描电镜对菌株形貌特性进行表征,利用16SrRNA基因序列比对进行菌种鉴定,探究其生长特性和硫酸盐还原性能。在此基础上降低温度和pH,对高效还原硫酸盐菌株进行驯化,探讨其在北方老窑水污染治理中的应用潜力。【结果】本研究筛选得到2株硫酸盐还原菌,命名为YQ-1和YQ-2,分别属于革兰氏阴性瘤胃解蛋白质菌属(Proteiniclasticum)和脱硫弧菌属(Desulfovibrio)。在30°C、pH 7.5条件下,YQ-1和YQ-2对1 1...  相似文献   
6.
7.
硫酸盐还原细菌(sulfate-reducing bacteria,SRB)形成的生物被膜是微生物导致金属锈蚀行为的主要原因,同时也是重金属污水微生物修复技术的关键因子。生物被膜形成及调控机制研究对SRB的防治和利用均十分重要。本文综述了近年来SRB生物被膜的研究进展,包括SRB生物被膜的胞外多聚物组成和控制因子,并着重阐述了目前已知的调控因子对SRB生物被膜形成的影响。  相似文献   
8.
Sulfate-reducing bacteria (SRB) are thought to be actively involved in the cycling of sulfur in acidic mine tailings. However, most studies have used circumstantial evidence to assess microbial sulfate activity in such environments. In order to fully ascertain the role of sulfate-reducing bacteria (SRB) in sulfur cycling in acidic mine tailings, we measured sulfate reduction rates, sulfur isotopic composition of reduced sulfide fractions, porewaters and solid-phase geochemistry and SRB populations in four different Cu-Zn tailings located in Timmins, Ontario, Canada. The tailings were sampled in the summer and in the spring, shortly after snowmelt. The results first indicate that all four sites showed very high sulfate reduction rates in the summer (~100–1000 nmol cm? 3d?1), which corresponded to the presence of sulfide in the porewaters and to high SRB populations. In some of the sites, zones of microbial sulfate reduction also corresponded to a decline of organic carbon and to an apparent pyrite (with slightly negative δ34S values) enrichment around the same depth. Microbial sulfate reduction was also important in permanently acidic (pH 2–3) mine tailings sites, suggesting that SRB can be active under very acidic conditions. Secondly, the results showed that microbial sulfate reduction was greatly reduced in the spring, suggesting that temperature might be a key factor in the activity of SRB. However, a closer look at the results indicated that temperature was not the sole factor and that acidic conditions and limited substrate availability in the spring appeared to be important as well in limiting microbial sulfate par reduction in sulfidic mine tailings. Finally, the results indicate that sulfur undergoes rapid cycling throughout the year and that microbial sulfate reduction and metal sulfide precipitation do not appear to be a permanent sink for metals.  相似文献   
9.
Identifying and explaining bottlenecks in organic carbon mineralization and the persistence of organic matter in marine sediments remain challenging. This study aims to illuminate the process of carbon flow between microorganisms involved in the sedimentary microbial food chain in anoxic, organic-rich sediments of the central Namibian upwelling system, using biogeochemical rate measurements and abundances of Bacteroidetes, Gammaproteobacteria, and sulfate-reducing bacteria at two sampling stations. Sulfate reduction rates decreased by three orders of magnitude in the top 20 cm at one sampling station (280 nmol cm?3 d?1 – 0.1 nmol cm?3 d?1) and by a factor of 7 at the second station (65 nmol cm?3 d?1 – 9.6 nmol cm?3 d?1). However, rates of enzymatic hydrolysis decreased by less than a factor of three at both sampling stations for the polysaccharides laminarin (23 nmol cm?3 d?1– 8 nmol cm?3 d?1 and 22 nmol cm?3 d?1– 10 nmol cm?3 d?1) and pullulan (11 nmol cm?3 d?1– 4 nmol cm?3 d?1 and 8 nmol cm?3 d?1– 6 nmol cm?3 d?1). Increasing imbalance between carbon turnover by hydrolysis and terminal oxidation with depth, the steep decrease in cell specific activity of sulfate reducing bacteria with depth, low concentrations of volatile fatty acids (less than 15 μM), and persistence of dissolved organic carbon, suggest decreasing bioavailability and substrate limitation with depth.  相似文献   
10.
The microbial communities in sulfate-rich, saline formation fluids of a natural gas reservoir in Lower Saxony, Germany were investigated to enhance the knowledge about microbial communities in potential carbon dioxide sequestration sites. This investigation of the initial state of the deep subsurface microbiota is necessary to predict their influence on the long-term stability and storage capacity of such sites. While the bacterial 16S rDNA gene library was comprised of sequences affiliating with the Firmicutes, the Alphaproteobacteria, the Gammaproteobacteria and the Thermotogales, the archaeal 16S rDNA libraries were simply dominated by two phylotypes related to the genera Methanolobus and Methanoculleus. The monitoring of the archaeal communities in different formation fluid samples by T-RFLP and Real-Time-PCR indicated that these two methanogenic genera dominated at all, whereas the proportion of the two groups varied. Thus, methylotrophic and autotrophic methanogenesis seems to be of importance in the reservoir fluids, dependent on the provided reduction equivalents and substrates and it also may influence the fate of CO2 in the subsurface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号