首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   7篇
  国内免费   10篇
  2023年   3篇
  2022年   7篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   6篇
  2014年   12篇
  2013年   20篇
  2012年   7篇
  2011年   5篇
  2010年   6篇
  2009年   10篇
  2008年   10篇
  2007年   8篇
  2006年   7篇
  2005年   7篇
  2004年   8篇
  2003年   6篇
  2002年   5篇
  2001年   10篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   9篇
  1991年   7篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
1.
The complex of a bacterial alkaline serine proteinase, subtilisin BPN’, with its proteinaceous inhibitorStreptomyces subtilisin inhibitor is unique in several respects, compared with other similar complexes containing serine proteinases of trypsin family. In addition to the usual antiparallelβ-sheet involving P1-P3 residues of the inhibitor, P4-P6 residues form antiparallelβ-sheet with a previously unnoticed chain segment (the ‘S4-6 site’) of subtilisin. The ‘S4-6 site’ does not exist in serine proteinases of trypsin family, whether of mammalian or microbial origin. Global induced-fit movement seems to occur on the ‘trapped substrate’Streptomyces subtilisin inhibitor: a channel-like structure in SSI remote from the contact region becomes about 2 Å wider upon complexing with subtilisin. Main role of the secondary contact region ofStreptomyces subtilisin inhibitor seems to support the reactive site loop (primary contact region). Steric homology for the two contact regions is so high between the inhibitors ofStreptomyces subtilisin inhibitor family and those of pancreatic secretory trypsin inhibitor-ovomucoid inhibitor family that it seems to favour a divergent evolution and to support the general notion as to the relationship of prokaryotic and eukaryotic genes put forwarded by Doolittle(Nature (London),272, 581, 1978).  相似文献   
2.
Subtilisin Carlsberg was covalently attached to five macroporous acrylic supports of varying aquaphilicity (a measure of hydrophilicity). Kinetic parameters of the transesterification of S and R enantiomers of secphenethyl alcohol with vinyl butyrate, catalyzed by various immobilized subtilisins, were determined in anhydrous dioxane and acetonitrile. Enzyme enantioselectivity in acetonitrile, but not in dioxane, correlated with the aquaphilicity of the support; a mechanistic rationale for this phenomenon was proposed. Although the catalytic activity of immobilized subtilisin in anhydrous solvents strongly depended on enzyme pretreatment, the enantioselectivity was essential conserved. (c) 1994 John Wiley & Sons, Inc.  相似文献   
3.
A basic trypsin-subtilisin inhibitor has been isolated from the egg white of marine turtle (Caretta caretta Linn.) and purified to homogeneity by gel filtration followed by ion-exchange chromatography. It has a single polypeptide chain of 117 amino acid residues, having a molecular weight of 13,600. It lacks methionine and tryptophan. Its isoelectric point is atpH 10.0 and the sedimentation coefficient (s20,w) value of 1.62 S is independent of protein concentration. It has a Stokes radius of 18.8 Å, an intrinsic viscosity of 0.048 dl g–1 and a diffusion coefficient of 10.17×10–7 cm2 sec–1. Its fluorescence emission spectrum is similar to that of free tyrosine and the bimolecular quencing rate constant of its tyrosine residues with acrylamide is 3.15×109 M–1 sec–1. The inhibitor strongly inhibits both trypsin and subtilisin by forming enzyme-inhibitor complexes at a molar ratio of unity. The nature of inhibition toward both enzymes is not temporary. It has independent binding sites for inhibition of trypsin and subtilisin. Chemical modification with tetranitromethane suggests the presence of three tyrosine residues on the surface of the inhibitor molecule.  相似文献   
4.
The alkaline proteases subtilisin Carlsberg and alcalase possess substantial enzymatic activity even when dissolved in ethanol. The crude enzymes were purified by gel filtration and the main fractions suspended in ethanol to give a translucent suspension. Both the supernatant and the resuspended precipitate after high-speed centrifugation were found to have enzymatic activities. The solubility of subtilisin Carlsberg in anhydrous ethanol was found to be 45.1g/ml and that of alcalase was 48.1g/ml by Coomassie blue dye-binding method using bovine serum albumin as a standard. In the presence of water, the solubility of both enzymes increased with water content. The stability of enzymes incubated in ethanol was assayed by their amidase and transesterase activities using Ala-Ala-Pro-Phe-pNA as substrate in phosphate buffer (pH8.2) and Moz-Leu-OBzl as substrate in anhydrous ethanol, respectively. The soluble enzymes have a half-life of about 36 hr and that of suspended enzymes about 50 hr in the amidase activity assay, whereas the same soluble enzymes have a half-life of about several hours and that of suspended enzymes 1 h by the transesterase activity assay. The stability of both enzymes decreased as water concentration increased. The diastereoselectivity of the enzyme-catalyzed hydrolysis of diastereo pairs of tetrapeptide esters,l-Ala-l-Ala-(d-orl-)Pro-l-Phe-OMe andl-Ala-l-Ala-(d-orl-)Ala-l-Phe-OMe, in phosphate is as high as that of the transesterification of these substrates in ethanol. It is concluded that active sites and selectivity of alkaline serine proteases in anhydrous alcohol are probably very similar to those in aqueous solution in spite of the fact that a lower reactivity is usually associated with the enzymes in nonaqueous solvents.  相似文献   
5.
Subtilases: the superfamily of subtilisin-like serine proteases.   总被引:28,自引:1,他引:27       下载免费PDF全文
Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling.  相似文献   
6.
枯草杆菌蛋白酶E的156和165位突变   总被引:1,自引:0,他引:1  
应用定点突变方法,在M222A突变的枯草杆菌蛋白酶E基因上进行E156S和V165I定点突变. 将突变基因插入大肠杆菌-枯草杆菌穿梭质粒pBE-2中,在碱性和中性蛋白酶缺陷型的枯草杆菌DB104中进行表达,得到突变种(M222A,E156S)和(M222A,E156S,V165I)蛋白酶E. 性质测定表明,E156S突变使蛋白酶比活力增加90%,并不影响酶的热稳定性和抗氧化性. 而V165I突变使蛋白酶比活力降低.  相似文献   
7.
The stability of the serine proteases from Bacillus amyloliquefaciens (subtillisin BPN') and Bacillus licheniformis (subtilisin Carlsberg) was investigated in various anhydrous solvents at 45 degrees C. The half-life of subtilisin BPN' in dimethyl-formamide dramatically depends on the pH of the aqueous solutions from which the enzyme was lyophilized, increasing from 48 min to 20 h when the pH is raised from 6.0 to 7.9. Both subtilisins exhibited substantial inactivation during multihour incubations in tert-amyl alcohol and acetonitrile when enzymatic activities were also measured in these solvents; however, when the enzymes were assayed in water instead, hardly any loss of activity was detected. This surprising difference appears to stem from the partitioning of the bound water essential for catalytic activity from the enzymes into the solvents. When assayed in organic solvents, this time-dependent stripping of water results in decay of enzymatic activity; however, when assayed in water, where the dehydrated subtilisins can undergo rehydration thereby recovering catalytic activity, little inactivation is observed. In agreement with this hypothesis, the addition of small quantities of water tert-amyl alcohol stabilized the subtilisins in it even when enzymatic activity was measured in the nonaqueous solvent. Ester substrates (vinyl butyrate and trichloroethyl butyrate) greatly enhanced the stability of both subtilisins in organic solvents possibly because of the formation of the acyl-enzymes.  相似文献   
8.
Summary Four enhanced carbonyl carbon resonances were observed whenStreptomyces subtilisin inhibitor (SSI) was labeled by incorporating specifically labeled [1-13C]Cys. The13C signals were assigned by the15N,13C double-labeling method along with site-specific mutagenesis. Changes in the spectrum of the labeled protein ([C]SSI) were induced by reducing the disulfide bonds with various amounts of dithiothreitol (DTT). The results indicate that, in the absence of denaturant, the Cys71-Cys101 disulfide bond of each SSI subunit can be reduced selectively. This disulfide bond, which is in the vicinity of the reactive site scissile bond Met73-Val74, is more accessible to solvent than the other disulfide bond. Cys35-Cys50, which is embedded in the interior of SSI. This half-reduced SSI had 65% of the inhibitory activity of native SSI and maintained a conformation similar to that of the fully oxidized SSI. Reoxidation of the half reduced-folded SSI by air regenerates fully active SSI which is indistinguishable with intact SSI by NMR. In the presence of 3 M guanidine hydrochloride (GuHCl), however, both disulfide bonds of each SSI subunit were readily reduced by DTT. The fully reduced-unfolded SSI spontaneously refolded into a native-like structure (fully reduced-folded state), as evidenced by the Cys carbonyl carbon chemical shifts, upon removing GuHCl and DTT from the reaction mixture. The time course of disulfide bond regeneration from this state by air oxidation was monitored by following the NMR spectral changes and the results indicated that the disulfide bond between Cys71 and Cys101 regenerates at a much faster rate than that between Cys35 and Cys50.Nomenclature of the various states of SSI that are observed in the present study Fully oxidized-folded native or intact (without GuHCl or DTT) - half reduced-folded (Cys71-Cys101 reduced; DTT without GuHCl) - inversely half reduced-folded (Cys35-Cys50 reduced; a reoxidation intermediate from fully reduced-folded state) - fully reduced-unfolded (reduced by DTT in the presence of GuHCl) - fully reduced-folded (an intermediate state obtained by removing DTT and GuHCl from the fully reduced-unfolded SSI reaction mixture)  相似文献   
9.
The interactions of chymotrypsin, subtilisin and trypsin with a low MW proteinase inhibitor from potatoes were investigated. The Ki value calculated for the binding of inhibitor to chymotrypsin was 1.6 ± 0.9 × 10?10M, while the second-order rate constant for association was 6 × 105 M?1/sec. Although binding was not observed to chymotrypsin which had been treated with diisopropyl fluorophosphate or with l-tosylamide-2-phenylethyl chloromethyl ketone, the 3-methylhistidine-57 derivative bound inhibitor with a Ki value of 9.6 × 10?9 M. The inhibitor also exhibited a tight association with subtilisin (Ki < 4 × 10?9 M). In contrast, little inhibition of trypsin was observed, and this was believed to be due to low levels of a contaminant in our preparations. No evidence for reactive site cleavage was observed after incubation of the inhibitor with catalytic amounts of chymotrypsin or subtilisin at acid pH.  相似文献   
10.
Fungal protease inhibitor F (FPI-F) from silkworm inhibits subtilisin and fungal proteases. FPI-F mutants P1 residues of which, Thr29, were replaced with Glu, Phe, Gly, Leu, Met, and Arg, were prepared. The inhibitory activities of mutated FPI-F against subtilisin and other mammalian proteases indicated that FPI-F might be a specific inhibitor toward subtilisin-type protease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号