首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   2篇
  国内免费   19篇
  159篇
  2024年   1篇
  2022年   1篇
  2021年   7篇
  2020年   4篇
  2019年   4篇
  2018年   7篇
  2017年   6篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   43篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   8篇
  2003年   6篇
  2002年   2篇
  2001年   4篇
  1999年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
1.
The physical and chemical environment, and the phytoplankton primary production of southeastern Brazil were studied in relation to the general oceanographic structure during two research cruises (winter and summer). In each cruise, a total of 91 stations were occupied. Data were collected on the spatial distribution of nutrients, phytoplankton biomass and photosynthetic capacity over the coastal, shelf and oceanic areas off São Paulo, Paraná and Santa Catarina States.During wintertime, the mixing processes between tropical warm waters of the Brazil Current and subantarctic waters of the Malvinas Current formed strong environmental gradients. The drainings of Rio de La Plata and Lagoa dos Patos are transported northwards by coastal currents, enriching the shelf waters off Santa Catarina State with inorganic nutrients and consequently increasing the chlorophyll a to the highest concentrations (> 3.5 mg m –3) measured during the two cruises. In slope waters chlorophyll values were always low (0.05–0.45 mg m –3). The chlorophyll within the euphotic layer varied from 8.8–36.7 and 1.2–18.5 mg m–2 during winter and summer, respectively.The surface photosynthetic rates during winter and summer cruises ranged respectively from 0.21–9.17 and 0.66–19.60 mgC/mgChl.a/h. The mean rates were higher in nearshore waters and decreased seaward.The thermal structure of the water column affected the vertical distribution of chlorophyll a and photosynthesis within the euphotic zone; During unstratified periods (winter) they were uniformly distributed but the occurrence of subsurface peaks of chlorophyll and strong photosynthetic inhibition of low light adapted cells in deeper layers are associated to the seasonal thermocline. Occasionally, upwelling of deep waters from shelf break enriched the deeper euphotic layers in offshore areas. Intensive upwelling was observed off Paranagua Bay (Parana State) and the mechanisms of its formation are discussed.  相似文献   
2.
Groundwater biota are particularly sensitive to environmental perturbations such as groundwater contamination. The diversity of prokaryotic and eukaryotic biota has been examined along a gradient of chlorinated hydrocarbon (CHC) contamination in the Botany Sands, an urban coastal sand-bed aquifer (Sydney, Australia). Molecular techniques were used to analyze the richness and composition of prokaryote and eukaryote assemblages using 16S and 18S rDNA, respectively. Taxon richness did not change significantly along the gradient for either prokaryotes or eukaryotes; however, significant shifts in assemblage composition were evident for both groups. Assemblage changes were most strongly correlated with concentrations of the major CHC, cis-1,2-dichloroethene, but the concentrations of a number of the contaminants were also correlated, making it difficult to infer if effects were due to any particular contaminant. The presence of cis-1,2-dichloroethene and other secondary ethenes suggests in situ breakdown of the primary CHCs via natural attenuation. The current focus of management of the Botany aquifer is to stop the contaminant plume reaching the adjoining estuary. This approach is clearly justified given the changes evident in the microbial assemblages in the groundwater, which are a likely consequence of the contamination.  相似文献   
3.
Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   
4.
The microbial communities in sulfate-rich, saline formation fluids of a natural gas reservoir in Lower Saxony, Germany were investigated to enhance the knowledge about microbial communities in potential carbon dioxide sequestration sites. This investigation of the initial state of the deep subsurface microbiota is necessary to predict their influence on the long-term stability and storage capacity of such sites. While the bacterial 16S rDNA gene library was comprised of sequences affiliating with the Firmicutes, the Alphaproteobacteria, the Gammaproteobacteria and the Thermotogales, the archaeal 16S rDNA libraries were simply dominated by two phylotypes related to the genera Methanolobus and Methanoculleus. The monitoring of the archaeal communities in different formation fluid samples by T-RFLP and Real-Time-PCR indicated that these two methanogenic genera dominated at all, whereas the proportion of the two groups varied. Thus, methylotrophic and autotrophic methanogenesis seems to be of importance in the reservoir fluids, dependent on the provided reduction equivalents and substrates and it also may influence the fate of CO2 in the subsurface.  相似文献   
5.
Extremophilic archaeal communities living in serpentinized muds influenced by pH 12.5 deep-slab derived fluids were detected and their richness and relatedness assessed from across seven serpentinite mud volcanoes located along the Mariana forearc. In addition, samples from two near surface core sections (Holes D and E) at ODP Site 1200 from South Chamorro were subjected to SSU rDNA clone library and phylogenetic analysis resulting in the discovery of several novel operational taxonomic units (OTUs). Five dominant OTUs of Archaea from Hole 1200D and six dominant OTUs of Archaea from Hole 1200E were determined by groups having three or more clones. Terminal-restriction fragment length polymorphism (T-RFLP) analysis revealed all of the dominant OTUs were detected within both clone libraries. Cluster analysis of the T-RFLP data revealed archaeal community structures from sites on Big Blue and Blue Moon to be analogous to the South Chamorro Hole 1200E site. These unique archaeal community fingerprints resulted from an abundance of potential methane-oxidizing and sulfate-reducing phylotypes. This study used deep-sea sediment coring techniques across seven different mud volcanoes along the entire Mariana forearc system. The discovery and detection of both novel Euryarchaeota and Marine Benthic Group B Crenarcheaota phylotypes could be efficacious archaeal indicator populations involved with anaerobic methane oxidation (AMO) and sulfate reduction fueled by deep subsurface serpentinization reactions.  相似文献   
6.
The Northern Baffin Bay between Greenland and Canada is a remote Arctic area restricted in primary production by seasonal ice cover, with presumably low sedimentation rates, carbon content and microbial activities in its sediments. Our aim was to study the so far unknown subseafloor geochemistry and microbial populations driving seafloor ecosystems. Shelf sediments had the highest organic carbon content, numbers of Bacteria and Archaea, and microcosms inoculated from Shelf sediments showed highest sulfate reduction and methane production rates. Sediments in the central deep area and on the southern slope contained less organic carbon and overall lower microbial numbers. Similar 16S rRNA gene copy numbers of Archaea and Bacteria were found for the majority of the sites investigated. Sulfate in pore water correlated with dsrA copy numbers of sulfate-reducing prokaryotes and differed between sites. No methane was found as free gas in the sediments, and mcrA copy numbers of methanogenic Archaea were low. Methanogenic and sulfate-reducing cultures were enriched on a variety of substrates including hydrocarbons. In summary, the Greenlandic shelf sediments contain vital microbial communities adapted to their specific environmental conditions.  相似文献   
7.
Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.  相似文献   
8.
Candidate bacterial phylum BRC1 has been identified in a broad range of mostly organic-rich oxic and anoxic environments through molecular analysis of microbial communities. None of the members of BRC1 have been cultivated and only a few draft genome sequences have been obtained from metagenomes or as a result of single-cell sequencing. We have reconstructed complete genome of BRC1 bacterium, BY40, from metagenome of the microbial community of a deep subsurface thermal aquifer in the Tomsk Region of the Western Siberia, Russia, and used it for metabolic reconstruction and comparison with existing genomic data. Analysis of 3.3 Mb genome of BY40 bacterium revealed numerous glycoside hydrolases that could enable utilization of carbohydrates, including enzymes of chitin-degradation pathway. The bacterium lacks flagellar machinery but the twitching motility is encoded. The reconstructed central metabolism revealed pathways enabling the fermentation of organic substrates, as well as their complete oxidation through aerobic and anaerobic respiration. Phylogenetic analysis using BY40 genome supported the phylum level classification of BRC1 lineage. Based on phylogenetic and genomic analyses, the novel bacterium is proposed to be classified as Candidatus Sumerlaea chitinivorans, within a candidate phylum Sumerlaeota.  相似文献   
9.
10.
Diverse micro‐organisms populate a global deep biosphere hosted by rocks and sediments beneath land and sea, containing more biomass than any other biome except forests. This paper reviews an emerging palaeobiological archive of these dark habitats: microfossils preserved in ancient pores and fractures in the crust. This archive, seemingly dominated by mineralized filaments (although rods and coccoids are also reported), is presently far too sparsely sampled and poorly understood to reveal trends in the abundance, distribution, or diversity of deep life through time. New research is called for to establish the nature and extent of the fossil record of Earth's deep biosphere by combining systematic exploration, rigorous microanalysis, and experimental studies of both microbial preservation and the formation of abiotic pseudofossils within the crust. It is concluded that the fossil record of Earth's largest microbial habitat may still have much to tell us about the history of life, the evolution of biogeochemical cycles, and the search for life on Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号