首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有2条查询结果,搜索用时 46 毫秒
1
1.
Viola (Violaceae) is one of the largest genera in angiosperms. This genus is essentially classified into stemless and stemmed groups based on growth morphology. However, Viola mirabilis var. subglabra is an exception in having intermediate flowering characteristics; cleistogamous (CL) flowers are formed in the axils of stem leaves, whereas chasmogamous (CH) flowers arise from basal rosettes (radical CH (CH(r)) flowers) and also in the axils of the stem (axially CH (CH(a)) flowers). To understand why the pattern of flower production varies in this Viola species, flower production was investigated in 10 Japanese populations from Hokkaido to the western part of Honshu in 2014 and 2015. Furthermore, flower characteristics were also compared between CH(r) and CH(a) flowers in Hokkaido. In this species, the production of CH flowers varied among individuals, and they were categorized into three groups, individuals that produced (i) only CH(r) flowers, (ii) only CH(a) flowers and (iii) both CH flowers. The frequency of these groups differed among populations, but some individuals changed the category between 2014 and 2015. Thus, the production of CH(r) and CH(a) flowers plastically changes depending on individual conditions and/or environmental factors. On the other hand, CH(r) and CH(a) flowers differed in flower size and flowering phenology. These results suggest that two types of CH flowers may play different roles in reproduction in each population, but fruit sets and seed sets did not differ between two types of CH flowers.  相似文献   
2.
Keryn I. Paul  Stephen H. Roxburgh  Jerome Chave  Jacqueline R. England  Ayalsew Zerihun  Alison Specht  Tom Lewis  Lauren T. Bennett  Thomas G. Baker  Mark A. Adams  Dan Huxtable  Kelvin D. Montagu  Daniel S. Falster  Mike Feller  Stan Sochacki  Peter Ritson  Gary Bastin  John Bartle  Dan Wildy  Trevor Hobbs  John Larmour  Rob Waterworth  Hugh T.L. Stewart  Justin Jonson  David I. Forrester  Grahame Applegate  Daniel Mendham  Matt Bradford  Anthony O'Grady  Daryl Green  Rob Sudmeyer  Stan J. Rance  John Turner  Craig Barton  Elizabeth H. Wenk  Tim Grove  Peter M. Attiwill  Elizabeth Pinkard  Don Butler  Kim Brooksbank  Beren Spencer  Peter Snowdon  Nick O'Brien  Michael Battaglia  David M Cameron  Steve Hamilton  Geoff McAuthur  Jenny Sinclair 《Global Change Biology》2016,22(6):2106-2124
Accurate ground‐based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost‐effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above‐ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power‐law models explained 84–95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand‐based biomass from allometric models of varying levels of generalization (species‐specific, plant functional type) were validated using whole‐plot harvest data from 17 contrasting stands (range: 9–356 Mg ha?1). Losses in efficiency of prediction were <1% if generalized models were used in place of species‐specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand‐level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost‐effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species‐specific models is only warranted when gains in accuracy of stand‐based predictions are relatively high (e.g. high‐value monocultures).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号