首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   19篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   6篇
  2016年   9篇
  2015年   11篇
  2014年   7篇
  2013年   10篇
  2012年   9篇
  2011年   8篇
  2010年   10篇
  2009年   5篇
  2008年   11篇
  2007年   10篇
  2006年   9篇
  2005年   4篇
  2004年   10篇
  2003年   5篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1976年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
1.
2.
A large offspring-number diploid biparental multilocus population model of Moran type is our object of study. At each time step, a pair of diploid individuals drawn uniformly at random contributes offspring to the population. The number of offspring can be large relative to the total population size. Similar “heavily skewed” reproduction mechanisms have been recently considered by various authors (cf. e.g., Eldon and Wakeley 2006, 2008) and reviewed by Hedgecock and Pudovkin (2011). Each diploid parental individual contributes exactly one chromosome to each diploid offspring, and hence ancestral lineages can coalesce only when in distinct individuals. A separation-of-timescales phenomenon is thus observed. A result of Möhle (1998) is extended to obtain convergence of the ancestral process to an ancestral recombination graph necessarily admitting simultaneous multiple mergers of ancestral lineages. The usual ancestral recombination graph is obtained as a special case of our model when the parents contribute only one offspring to the population each time. Due to diploidy and large offspring numbers, novel effects appear. For example, the marginal genealogy at each locus admits simultaneous multiple mergers in up to four groups, and different loci remain substantially correlated even as the recombination rate grows large. Thus, genealogies for loci far apart on the same chromosome remain correlated. Correlation in coalescence times for two loci is derived and shown to be a function of the coalescence parameters of our model. Extending the observations by Eldon and Wakeley (2008), predictions of linkage disequilibrium are shown to be functions of the reproduction parameters of our model, in addition to the recombination rate. Correlations in ratios of coalescence times between loci can be high, even when the recombination rate is high and sample size is large, in large offspring-number populations, as suggested by simulations, hinting at how to distinguish between different population models.  相似文献   
3.
The concomitant production of formic acid and pterin compounds from guanosine-5′-triphosphate (GTP) has been found in cell-free extracts of Serratia indica. Among the pterin compounds, l-threo-neopterin–the major Crithidia factor in S. indica–, a cyclic phosphate of neopterin (cNP), d-erythro-neopterin and 6-hydroxymethyl pterin were detected and isolated. Formate-14C elimination from GTP-8-14C was quantitatively distributed in the ethyl acetate layer in the ehyl acetate-hydrochloric acid partition system. Carbon 8 of GTP was released as formic acid. Enzymatic production of formate and cNP was linear for 2 hr at 37°C. Formate production was proportional to the enzyme concentration. The optimum pH for formate elimination was observed around pH 8.6. Optimum temperature for the production of formate and cNP was 50°C. The apparent Km value of GTP for formate production was 6.2×10?bm. Formate eliminating activity was activated by disodium phosphate but was inhibited by Mg2+ or AMP. Incorporation of GTP-U-14C into pterin compounds was also regulated with disodium phosphate. Effective incorporation into cNP and d-erythro-neopterin occurred in the presence of phosphate. When phosphate was omitted from the system, however, effective incorporation into 6-hydroxymethyl pterin was observed. The biosynthetic process of the Crithidia factors, i.e. l-threo-neopterin and cNP, from GTP in S. indica is also discussed.  相似文献   
4.
Species trees have traditionally been inferred from a few selected markers, and genome‐wide investigations remain largely restricted to model organisms or small groups of species for which sampling of fresh material is available, leaving out most of the existing and historical species diversity. The genomes of an increasing number of species, including specimens extracted from natural history collections, are being sequenced at low depth. While these data sets are widely used to analyse organelle genomes, the nuclear fraction is generally ignored. Here we evaluate different reference‐based methods to infer phylogenies of large taxonomic groups from such data sets. Using the example of the Oleeae tribe, a worldwide‐distributed group, we build phylogenies based on single nucleotide polymorphisms (SNPs) obtained using two reference genomes (the olive and ash trees). The inferred phylogenies are overall congruent, yet present differences that might reflect the effect of distance to the reference on the amount of missing data. To limit this issue, genome complexity was reduced by using pairs of orthologous coding sequences as the reference, thus allowing us to combine SNPs obtained using two distinct references. Concatenated and coalescence trees based on these combined SNPs suggest events of incomplete lineage sorting and/or hybridization during the diversification of this large phylogenetic group. Our results show that genome‐wide phylogenetic trees can be inferred from low‐depth sequence data sets for eukaryote groups with complex genomes, and histories of reticulate evolution. This opens new avenues for large‐scale phylogenomics and biogeographical analyses covering both the extant and the historical diversity stored in museum collections.  相似文献   
5.
The morpho–environmental similarity between subsections Natrix and Viscosae has been pointed out as the reason for the genetic complexity of these groups of taxa. Based on this characterization a question emerges: could a very recent ongoing evolutionary process explain that morpho–environmental similarity? ISSR and cpSSR amplifications for 45 specimens belonging to taxa of Natrix and Viscosae subsections were developed, along their biogeographic distribution areas. Twenty-nine haplotypes were detected in the biogeographic area of both subsections, 79% were exclusive haplotypes, but the rest is shared between subsections Natrix and Viscosae species. Could that haplotype sharing be the result of potential hybridization between these taxa? Do current environmental conditions restrict the gene flow among taxa? The combination of ancestral genetic polymorphism, introgression, coalescence processes and periodic restricted environments (PRE) by glacial–interglacial environmental dynamics were discussed to explain the relevant percentage of exclusive haplotypes detected, as well as the persistence of shared haplotypes. These results are in accordance with the morpho–environmental proximity previously described for both subsections.  相似文献   
6.
In the upwelling zone of the northeastern Pacific, cold nutrient-rich conditions alternate with warm nutrient-poor intervals on timescales ranging from months to millennia. In this setting, the abundances of Pacific sardine (Sardinops sagax) and northern anchovy (Engraulis mordax) fluctuate by several orders of magnitude, with sardine dominating during warm conditions and anchovy dominating during cool conditions. Two population models can explain the response of these fishes to adverse conditions. Under the basin model, species distributions contract to a central (optimal) range during population crashes. Expectations of this model may include a single range-wide population with a decline in genetic diversity on both sides of a central refuge. In contrast, the self-recruitment model invokes a series of local oceanographic domains that maintain semi-isolated subpopulations. During adverse conditions, some subpopulations cannot complete the life cycle within the local environment and are extirpated. Expectations of this model include some degree of population genetic structure and no clear gradient in genetic diversity. We examined mitochondrial DNA cytochrome b sequences to assess these competing models for anchovy (N = 196; 539 bp) and sardine (N = 107; 425 bp). The mitochondrial DNA gene genealogies are shallow but diverse for both species. Haplotype frequencies are homogeneous among subpopulations, but genetic diversities peak for both species along Baja California and adjacent southern California. Mismatch distributions and Tajima's D-values reveal distinctive signatures of population bottlenecks and expansions. Sardine haplotypes coalesce at approximately 241,000 years bp, with an initial female effective population size Nf0 = 0 followed by exponential growth to Nf1 = 115 million. Anchovy haplotypes coalesce at approximately 282,000 years bp, with an initial population size of Nf0 = 14,000, followed by exponential growth to Nf1 = 2.3 million. These results indicate a founder event for sardine and a severe population decline for anchovy in the California Current during the late Pleistocene. Overall, these data support the basin model on decadal timescales, although local recruitment may dominate on shorter timescales.  相似文献   
7.
In the newly emerging field of statistical phylogeography, consideration of the stochastic nature of genetic processes and explicit reference to theoretical expectations under various models has dramatically transformed how historical processes are studied. Rather than being restricted to ad hoc explanations for observed patterns of genetic variation, assessments about the underlying evolutionary processes are now based on statistical tests of various hypotheses, as well as estimates of the parameters specified by the models. A wide range of demographical and biogeographical processes can be accommodated by these new analytical approaches, providing biologically more realistic models. Because of these advances, statistical phylogeography can provide unprecedented insights about a species' history, including decisive information about the factors that shape patterns of genetic variation, species distributions, and speciation. However, to improve our understanding of such processes, a critical examination and appreciation of the inherent difficulties of historical inference and challenges specific to testing phylogeographical hypotheses are essential. As the field of statistical phylogeography continues to take shape many difficulties have been resolved. Nonetheless, careful attention to the complexities of testing historical hypotheses and further theoretical developments are essential to improving the accuracy of our conclusions about a species' history.  相似文献   
8.
Genetic variation in organisms with sexual and asexual reproduction   总被引:1,自引:0,他引:1  
The genetic variation in a partially asexual organism is investigated by two models suited for different time scales. Only selectively neutral variation is considered. Model 1 shows, by the use of a coalescence argument, that three sexually derived individuals per generation are sufficient to give a population the same pattern of allelic variation as found in fully sexually reproducing organisms. With less than one sexual event every third generation, the characteristic pattern expected for asexual organisms appear, with strong allelic divergence between the gene copies in individuals. At intermediary levels of sexuality, a complex situation reigns. The pair-wise allelic divergence under partial sexuality exceeds, however, always the corresponding value under full sexuality. These results apply to large populations with stable reproductive systems. In a more general framework, Model 2 shows that a small number of sexual individuals per generation is sufficient to make an apparently asexual population highly genotypically variable. The time scale in terms of generations needed to produce this effect is given by the population size and the inverse of the rate of sexuality.  相似文献   
9.
The phylogegraphic pattern of Cycas taitungensis, an endemic species with two remaining populations in Taiwan, was investigated based on genetic variability and phylogeny of the atpB-rbcL noncoding spacer of chloroplast DNA (cpDNA) and the ribosomal DNA (rDNA) internal transcribed spacer (ITS) of mitochondrial DNA (mtDNA). High levels of genetic variation at both organelle loci, due to frequent intramolecular recombination, and low levels of genetic differentiation were detected in the relict gymnosperm. The apportionment of genetic variation within and between populations agreed with a migrant-pool model, which describes a migratory pattern with colonists recruited from a random sample of earlier existing populations. Phylogenies obtained from cpDNA and mtDNA were discordant according to neighbour-joining analyses. In total four chlorotypes (clades I-IV) and five mitotypes (clades A-E) were identified based on minimum spanning networks of each locus. Significant linkage disequilibrium in mitotype-chlorotype associations excluded the possibility of the recurrent homoplasious mutations as the major force causing phylogenetic inconsistency. The most abundant chlorotype I was associated with all mitotypes and the most abundant mitotype C with all chlorotypes; no combinations of rare mitotypes with rare chlorotypes were found. According to nested clade analyses, such nonrandom associations may be ascribed to relative ages among alleles associated with the geological history through which cycads evolved. Nested in networks as interior nodes coupled with wide geographical distribution, the most dominant cytotypes of CI and EI may represent ancestral haplotypes of C. taitungensis with a possible long existence prior to the Pleistocene glacial maximum. In contrast, rare chlorotypes and mitotypes with restricted and patchy distribution may have relatively recent origins. Newly evolved genetic elements of mtDNA, with a low frequency, were likely to be associated with the dominant chlorotype, and vice versa, resulting in the nonrandom mitotype-chlorotype associations. Paraphyly of CI and EI cytotypes, leading to the low level of genetic differentiation between cycad populations, indicated a short period for isolation, which allowed low possibilities of the attainment of coalescence at polymorphic ancestral alleles.  相似文献   
10.
In numerous species, individual dispersal is restricted in space so that "continuous" populations evolve under isolation by distance. A method based on individual genotypes assuming a lattice population model was recently developed to estimate the product Dsigma2, where D is the population density and sigma2 is the average squared parent-offspring distance. We evaluated the influence on this method of both mutation rate and mutation model, with a particular reference to microsatellite markers, as well as that of the spatial scale of sampling. Moreover, we developed and tested a nonparametric bootstrap procedure allowing the construction of confidence intervals for the estimation of Dsigma2. These two objectives prompted us to develop a computer simulation algorithm based on the coalescent theory giving individual genotypes for a continuous population under isolation by distance. Our results show that the characteristics of mutational processes at microsatellite loci, namely the allele size homoplasy generated by stepwise mutations, constraints on allele size, and change of slippage rate with repeat number, have little influence on the estimation of Dsigma2. In contrast, a high genetic diversity (approximately 0.7-0.8), as is commonly observed for microsatellite markers, substantially increases the precision of the estimation. However, very high levels of genetic diversity (>0.85) were found to bias the estimation. We also show that statistics taking into account allele size differences give unreliable estimations (i.e., high variance of Dsigma2 estimation) even under a strict stepwise mutation model. Finally, although we show that this method is reasonably robust with respect to the sampling scale, sampling individuals at a local geographical scale gives more precise estimations of Dsigma2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号