首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  2016年   1篇
  2013年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Anion exchanger 2 (AE2) has a critical role in epithelial cells and is involved in the ionic homeostasis such as Cl? uptake and HCO3? secretion. However, little is known about the regulatory mechanism of AE2. The main goal of the present study was to investigate potential regulators, such as spinophilin (SPL), inositol-1,4,5-trisphosphate [IP3] receptors binding protein released with IP3 (IRBIT), STE20/SPS1-related proline/alanine-rich kinase (SPAK) kinase, and carbonic anhydrase XII (CA XII). We found that SPL binds to AE2 and markedly increased the Cl?/HCO3? exchange activity of AE2. Especially SPL 1–480 domain is required for enhancing AE2 activity. For other regulatory components that affect the fidelity of fluid and HCO3? secretion, IRBIT and SPAK had no effect on the activity of AE2 and no protein-protein interaction with AE2. It has been proposed that CA activity is closely associated with AE activity. In this study, we provide evidence that the basolateral membrane-associated CA isoform CA XII significantly increased the activity of AE2 and co-localized with AE2 to the plasma membrane. Collectively, SPL and CA XII enhanced the Cl?/HCO3? exchange activity of AE2. The modulating action of these regulatory proteins could serve as potential therapeutic targets for secretory diseases mediated by AE2.  相似文献   
2.
3.
The peptide angiotensin IV (Ang IV) is a derivative of angiotensin II. While insulin regulated amino peptidase (IRAP) has been proposed as a potential receptor for Ang IV, the signalling pathways of Ang IV through IRAP remain elusive. We applied high-resolution mass spectrometry to perform a systemic quantitative phosphoproteome of Neura-2A (N2A) cells treated with and without Ang IV using sta ble-isotope labeling by amino acids in cell culture (SILAC), and identified a reduction in the phosphorylation of a major Ser/Thr protein phosphorylase 1 (PP1) upon Ang IV treatment. In addition, spinophilin (spn), a PP1 regulatory protein that plays important functions in the neural system, was expressed at higher levels. Immunoblotting revealed decreased phosphorylation of p70S6 kinase (p70S6K) and the major cell cycle modulator retinoblastoma protein (pRB). These changes are consistent with an observed decrease in cell proliferation. Taken together, our study suggests that Ang IV functions via regulating the activity of PP1.  相似文献   
4.
Spinophilin is a protein phosphatase-1- and actin-binding protein that modulates excitatory synaptic transmission and dendritic spine morphology. We have recently shown that the interaction of spinophilin with the actin cytoskeleton depends upon phosphorylation by protein kinase A. We have now found that spinophilin is phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in neurons. Ca(2+)/calmodulin-dependent protein kinase II, located within the post-synaptic density of dendritic spines, is known to play a role in synaptic plasticity and is ideally positioned to regulate spinophilin. Using tryptic phosphopeptide mapping, site-directed mutagenesis and microsequencing analysis, we identified two sites of CaMKII phosphorylation (Ser-100 and Ser-116) within the actin-binding domain of spinophilin. Phosphorylation by CaMKII reduced the affinity of spinophilin for F-actin. In neurons, phosphorylation at Ser-100 by CaMKII was Ca(2+) dependent and was associated with an enrichment of spinophilin in the synaptic plasma membrane fraction. These results indicate that spinophilin is phosphorylated by multiple kinases in vivo and that differential phosphorylation may target spinophilin to specific locations within dendritic spines.  相似文献   
5.
We showed previously that RGS8 directly binds to the third intracellular loop (i3L) of the M1 muscarinic acetylcholine receptor using the sequence MPRR at the N-terminus of RGS8 and specifically inhibits signal transduction. Here, we identified spinophilin (SPL) as an RGS8-interacting protein. We found that the SPL-binding site of RGS8 is the MPRR sequence, and the M1 receptor and SPL compete for binding to RGS8. However, we also observed that the expression of SPL significantly enhances the inhibitory function of RGS8, and that SPL can bind to the M1 receptor, demonstrating the indirect binding of RGS8 to the M1 receptor through SPL for an efficient regulatory function.  相似文献   
6.
Distinct physiological stimuli are required for bidirectional synaptic plasticity in striatum and hippocampus, but differences in the underlying signaling mechanisms are poorly understood. We have begun to compare levels and interactions of key excitatory synaptic proteins in whole extracts and subcellular fractions isolated from micro‐dissected striatum and hippocampus. Levels of multiple glutamate receptor subunits, calcium/calmodulin‐dependent protein kinase II (CaMKII), a highly abundant serine/threonine kinase, and spinophilin, a F‐actin and protein phosphatase 1 (PP1) binding protein, were significantly lower in striatal extracts, as well as in synaptic and/or extrasynaptic fractions, compared with similar hippocampal extracts/fractions. However, CaMKII interactions with spinophilin were more robust in striatum compared with hippocampus, and this enhanced association was restricted to the extrasynaptic fraction. NMDAR GluN2B subunits associate with both spinophilin and CaMKII, but spinophilin‐GluN2B complexes were enriched in extrasynaptic fractions whereas CaMKII‐GluN2B complexes were enriched in synaptic fractions. Notably, the association of GluN2B with both CaMKII and spinophilin was more robust in striatal extrasynaptic fractions compared with hippocampal extrasynaptic fractions. Selective differences in the assembly of synaptic and extrasynaptic signaling complexes may contribute to differential physiological regulation of excitatory transmission in striatum and hippocampus.  相似文献   
7.
Spinophilin is a protein phosphatase-1 (PP-1)- and actin-binding protein that is enriched in dendritic spines. Phosphorylation of the actin-binding domain of rat spinophilin at one or more sites by protein kinase A (PKA) inhibits actin binding. Here, we investigated the regulation of mouse spinophilin that contains only a single PKA-site (Ser94) within its actin-binding domain. In vitro phosphorylation of Ser94 resulted in the dissociation of spinophilin from actin filaments. In mouse neostriatal slices, phospho-Ser94 (p-Ser94) was dephosphorylated mainly by PP-1 and also by PP-2A. Activation of dopamine D1 receptors in striatonigral medium spiny neurons, and of adenosine A 2A receptors in striatopallidal medium spiny neurons increased, whereas activation of dopamine D2 receptors in striatopallidal neurons decreased, spinophilin Ser94 phosphorylation. In neostriatal slices from DARPP-32 (dopamine- and cAMP-regulated phosphoprotein of 32 kDa) knockout mice, the effects of D1, D2 and A 2A receptors were largely attenuated. Activation of NMDA receptors decreased Ser94 phosphorylation in a PP-2A-dependent, but DARPP-32-independent, manner. These results suggest that PKA-dependent phosphorylation of spinophilin at Ser94 in both striatonigral and striatopallidal neurons requires synergistic contributions from the PKA and DARPP-32/PP-1 pathways. In addition, PP-2A plays a role in Ser94 dephosphorylation in response to activation of both D2 and NMDA receptors.  相似文献   
8.
We previously demonstrated that overexpression of RanBP9 led to enhanced Aβ generation in a variety of cell lines and primary neuronal cultures, and subsequently, we confirmed increased amyloid plaque burden in a mouse model of Alzheimer''s disease (AD). In the present study, we found striking reduction of spinophilin protein levels when RanBP9 is overexpressed. At 12 months of age, we found spinophilin levels reduced by 70% (P<0.001) in the cortex of APΔE9/RanBP9 mice compared with that in wild-type (WT) controls. In the hippocampus, the spinophilin levels were reduced by 45% (P<0.01) in the APΔE9/RanBP9 mice. Spinophilin immunoreactivity was also reduced by 22% (P<0.01) and 12% (P<0.05) in the cortex of APΔE9/RanBP9 and APΔE9 mice, respectively. In the hippocampus, the reductions were 27% (P<0.001) and 14% (P<0.001) in the APΔE9/RanBP9 and APΔE9 mice, respectively. However, in the cerebellum, spinophilin levels were not altered in either APΔE9 or APΔE9/RanBP9 mice. Additionally, synaptosomal functional integrity was reduced under basal conditions by 39% (P<0.001) in the APΔE9/RanBP9 mice and ∼23% (P<0.001) in the APΔE9 mice compared with that in WT controls. Under ATP- and KCl-stimulated conditions, we observed higher mitochondrial activity in the WT and APΔE9 mice, but lower in the APΔE9/RanBP9 mice. Significantly, we confirmed the inverse relationship between RanBP9-N60 and spinophilin in the synaptosomes of Alzheimer''s brains. More importantly, both APΔE9 and APΔE9/RanBP9 mice showed impaired learning and memory skills compared to WT controls. These data suggest that RanBP9 might play a crucial role in the loss of spines and synapses in AD.  相似文献   
9.
Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABA(A) receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males.  相似文献   
10.
Prostaglandin E2 (PGE2) mediates the organization of male rat sexual behavior and medial preoptic area (MPOA) neuroanatomy during a sensitive perinatal window. PGE2 is up-regulated in response to estradiol, and initiates a two-fold increase in dendritic spines densities on neurons. All the four receptors for PGE2 and EP1-4 are present in developing POA, a critical region controlling male sexual behavior. Previous studies explored that EP receptors are involved in PGE2-induction of neonatal levels of spinophilin protein, a surrogate marker for dendritic spine formation, but did not assess behavioral masculinization. Here, we used two approaches, suppression of EP receptor expression with antisense oligonucleotides and activation of EP receptors with selective agonists, to test which receptors are necessary and sufficient, respectively, for the effects of PGE2 on behavior and neuronal morphology. In female rats, neonatal treatment with antisense oligonucleotides against EP2 or EP4 but not EP1 or EP3 completely prevented the expression of adult behavior organized by PGE2 exposure. The effects of ONO-DI-004, ONO-AE-259-01, ONO-AE-248, and ONO-AE1-329 (EP1-4 agonists respectively) were equivalent to PGE2 treatment, which suggests activating any EP receptor neonatally suffices in masculinizing sex behavior. When given alone, not all EP agonists increased neonatal POA spinophilin levels; yet giving each agonist neonatally increased adult levels. Moreover, adult spinophilin levels significantly correlated with two measures of male sexual behavior. The body of evidence suggests that EP2 and EP4 are both necessary and sufficient for PGE2-induced masculinization of sex behavior, whereas EP1 and EP3 provide redundant roles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号