首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2325篇
  免费   187篇
  国内免费   56篇
  2024年   6篇
  2023年   38篇
  2022年   59篇
  2021年   86篇
  2020年   96篇
  2019年   94篇
  2018年   97篇
  2017年   65篇
  2016年   60篇
  2015年   76篇
  2014年   152篇
  2013年   181篇
  2012年   102篇
  2011年   116篇
  2010年   77篇
  2009年   91篇
  2008年   101篇
  2007年   88篇
  2006年   90篇
  2005年   78篇
  2004年   73篇
  2003年   49篇
  2002年   52篇
  2001年   51篇
  2000年   52篇
  1999年   35篇
  1998年   44篇
  1997年   41篇
  1996年   32篇
  1995年   33篇
  1994年   28篇
  1993年   39篇
  1992年   20篇
  1991年   18篇
  1990年   22篇
  1989年   24篇
  1988年   19篇
  1987年   18篇
  1986年   19篇
  1985年   27篇
  1984年   20篇
  1983年   20篇
  1982年   19篇
  1981年   16篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1973年   7篇
  1972年   5篇
  1970年   4篇
排序方式: 共有2568条查询结果,搜索用时 15 毫秒
1.
The development of spinal cord supports (bony thickenings which extend into the vertebral canal of vertebrae) in primitive (Salamandrella keyserlingii) and derived (Lissotriton vulgaris) salamanders were described. The spinal cord supports develop as the protuberances of periostal bone of the neural arches in the anteroproximal part of the septal collagenous fibers which connect a transverse myoseptum with the notochord and spinal cord, in the septal bundle inside the vertebral canal. Spinal cord supports were also found in some teleostean (Salmo salar, Oncorhynchus mykiss) and dipnoan (Protopterus sp.) fishes. The absence of the spinal cord supports in vertebrates with cartilaginous vertebrae (lampreys, chondrichthyan, and chondrostean fishes) corresponds to the fact that the spinal cord supports are bone structures. The absence of the spinal cord supports in frogs correlates with the lack of the well developed septal bundles inside the vertebral canal. The spinal cord supports are, presumably, a synapomorphic character for salamanders which originated independently of those observed in teleostean and dipnoan fishes. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
2.
Exosomes derived from differentiated P12 cells and MSCs were proved to suppress apoptosis of neuron cells, and phosphatase and tensin homolog pseudogene 1 (PTENP1) was reported to inhibit cell proliferation. In this study, we aimed to investigate the role of PTENP1 in the process of post-spinal cord injury (SCI) recovery, so as to evaluate the therapeutic effects of exosomes derived from MSCs transfected with PTENP1 short hairpin RNA (shRNA), as a type of novel biomarkers in the treatment of SCI. Electron microscopy was used to observe the morphology of different exosomes. Real-time polymerase chain reaction and western blot, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, flow cytometry, Nissl staining, immunohistochemistry assay, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were conducted to investigate and validate the underlying molecular signaling pathway. PTENP1-shRNA downregulated PTENP1 and PTEN while upregulating miR-21 and miR-19b. PTENP1-shRNA also accelerated cell apoptosis and reduced cell viability. In addition, PTENP1 reduced the miR-21 and miR-19b expression by directly targeting miR-21 and miR-19b. Meanwhile, both miR-21 and miR-19b reduced the expression of PTEN by directly targeting the 3′-untranslated region of PTEN. Furthermore, PTEN level and apoptosis index of neuron cells was the highest in the SCI group, while the treatment with exosomes+PTENP1-shRNA reduced the PTEN expression to a level similar to that in the sham group. Finally, PTENP1 inhibited miR-21 and miR-19b expression but upregulated PTEN expression. The upregulation of miR-21/miR-19b also suppressed the apoptosis of neuron cells by downregulating the PTEN expression. PTENP1 is involved in the recovery of SCI by regulating the expression of miR-19b and miR-21, and exosomes from PTENP1-shRNA-transfected cells may be used as a novel biomarker in SCI treatment.  相似文献   
3.
《Current biology : CB》2020,30(5):827-839.e4
  1. Download : Download high-res image (204KB)
  2. Download : Download full-size image
  相似文献   
4.
Spinal muscular atrophy (SMA) is the most common genetic disease that causes infant mortality. Its treatment and prevention represent the paradigmatic example of the ethical dilemmas of 21st-century medicine. New therapies (nusinersen and AVXS-101) hold the promise of being able to treat, but not cure, the condition. Alternatively, genomic analysis could identify carriers, and carriers could be offered in vitro fertilization and preimplantation genetic diagnosis. In the future, gene editing could prevent the condition at the embryonic stage. How should these different options be evaluated and compared within a health system? In this paper, we discuss the ethical considerations that bear on the question of how to prioritize the different treatments and preventive options for SMA, at a policy level. We argue that despite the tremendous value of what we call ‘ex-post’ approaches to treating SMA (such as using pharmacological agents or gene therapy), there is a moral imperative to pursue ‘ex-ante’ interventions (such as carrier screening in combination with prenatal testing and preimplantation genetic diagnosis, or gene editing) to reduce the incidence of SMA. There are moral reasons relating to autonomy, beneficence and justice to prioritize ex-ante methods over ex-post methods.  相似文献   
5.
Abstract: N -Acetylsuccinimidylglutamate [(asu)NAAG], a cyclic form of the peptide N -acetylaspartylglutamate (NAAG) in which the aspartyl residue is linked to glutamate via the α- and β-carboxylates, was identified and quantified by HPLC in the murine and bovine CNS. In the rat, the highest concentrations of (asu)NAAG were detected in the spinal cord (1.83 ± 0.15 pmol/mg of wet tissue weight) and brainstem (1.16 ± 0.08 pmol/mg wet weight), whereas the levels were below the limit of detection in cerebellum, hippocampus, and cerebral cortex. (Asu)NAAG was also detected in significant amounts in the superior colliculus and lateral genicutale nucleus (1.17 ± 0.05 and 0.82 ± 0.13 pmol/mg wet weight, respectively). Although the tissue content of (asu)NAAG was about three orders of magnitude lower than that of NAAG, levels of both peptides were positively correlated among different CNS regions ( r = 0.74, p < 0.003). In the rat spinal cord, (asu)NAAG levels progressively increased from week 2 to month 12 after birth. In bovine spinal cord, the contents of (asu)NAAG and NAAG were comparable in gray and white matter as well as in the dorsal and ventral horns. These results suggest that NAAG and (asu)-NAAG are closely related metabolically and raise the question of the physiological significance of such a cyclic peptide.  相似文献   
6.
7.
Summary Transection of the sciatic nerve in Rhesus monkeys and the consequent transganglionic degenerative atrophy (TDA) of central terminals of primary afferents result in transneuronal degeneration of substantia gelatinosa (SG) cells. Severe degeneration is characterized by an increased electron density of the nucleus and by conspicuous shrinkage of the cytoplasm, mitochondrial swelling, dilation of cisterns of the rough-surfaced endoplasmic reticulum, accumulation of free ribosomes and an electron-dense material in the cytoplasm. In the mild form, dilation of cisternal elements of the endoplasmic reticulum, swollen mitochondria and accumulation of free ribosomes takes place. About 10% of SG cells in segment L5 undergo the severe form whereas the rest shows signs of the mild form. Cytoplasmic alterations that occur during transneuronal degeneration seem to start at the level of subsurface cisterns. Dendrites and axons of transneuronally degenerating SG cells also show a conspicuous electron density. By analyzing the synaptic relationships of such darkened dendrites, connections in the upper dorsal horn can be deciphered. Modular units of the primary nociceptive analyzer that evaluate noxious and innocuous inputs on the basis of thin versus thick (AC/A) afferent activity and subjecting them to descending control appear to be recruited from structurally dispersed elements of synaptic glomeruli. These are arranged alongside dendritic processes of large antenna cells which relay impulses to projection cells of the spinothalamic tract.  相似文献   
8.
俞昌喜  王庆平 《生理学报》1990,42(4):331-339
本文应用受体阻断、高效液相,6-OHDA 化学损毁神经末梢和放射自显影等多学科技术方法,探讨脊髓苯环立啶受体的心血管效应与去甲肾上腺素能神经系统的关系。结果表明,哌唑嗪、育亨宾均可对抗 ith PCP 的降压和减慢心率作用,ith PCP 产生降压和减慢心率作用时,脊髓脑脊液内 MHPG 的含量升高;用6-OHDA 损毁脊髓 NA 能神经末梢后,ith PCP的降压和减慢心率作用大为减弱,脊髓 PCP 受体密度亦同时大为降低。可以认为,脊髓内有 PCP 受体分布于 NA 能神经末梢上,促进 NA 释放或抑制 NA 重摄取,可能是脊髓 PCP 受体产生心血管抑制效应的重要机理。  相似文献   
9.
Phenyl di-n-pentylphosphinate is a reasonably stable easily synthesized inhibitor of neuropathy target esterase (NTE) with low anticholinesterase activity. Like phenylmethylsulphonyl fluoride it protects hens against neuropathic effects of compounds such as diisopropylphosphorofluoridate. At intervals up to 15 days after dosing hens (10 mg/kg s.c. to inhibit 90% NTE) assays were made of catalytically active and of phosphinylated NTE in autopsy tissue. The sum of these components was always within the range of catalytic activity in undosed controls. However, the half-life of reappearance of active NTE was 2.07 days +/- 0.13 (SD, n = 6) for brain and 3.62 days +/- 0.23 (SD, n = 6) for spinal cord--shorter than after dosing with phenylmethylsulphonyl fluoride. It is proposed that: (1) The physiological turnover mechanism cannot distinguish between catalytically active and di-n-pentylphosphinylated NTE although initiation of organophosphate-induced delayed polyneuropathy might involve recognition of aged di-alkyl-phosphorylated NTE as "foreign". (2) The short half-lives indicate a slow spontaneous dephosphinylation of inhibited NTE occurs in vivo as well as de novo synthesis. The difference in half-lives for brain and spinal cord NTE may be due to different rates of synthesis de novo or (more likely) to different rates of spontaneous reactivation of the inhibited NTE in the two tissues.  相似文献   
10.
Previous studies indicated that DL-buthionine sulfoximine (DL-BSO), an agent that inhibits the biosynthesis of GSH in liver and other peripheral organs, fails to suppress levels of GSH in the CNS. In the current study, preweanling mice responded to repeated injections of L-BSO with marked declines (79.6-86.5%) of GSH content in brain and spinal cord. In adult mice, the same treatment schedule produced only modest declines (17.8-29.2%) of GSH content in brain and a 55.9% decline in spinal cord. Pretreatment of preweanling mice with L-BSO represents a tool for studying the role of GSH in the CNS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号