首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   361篇
  免费   8篇
  国内免费   10篇
  2022年   1篇
  2021年   2篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   11篇
  2007年   2篇
  2006年   9篇
  2005年   14篇
  2004年   11篇
  2003年   9篇
  2002年   14篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   15篇
  1997年   9篇
  1996年   13篇
  1995年   13篇
  1994年   16篇
  1993年   11篇
  1992年   11篇
  1991年   12篇
  1990年   16篇
  1989年   8篇
  1988年   19篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1984年   11篇
  1983年   1篇
  1982年   6篇
  1981年   7篇
  1980年   9篇
  1979年   5篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1975年   4篇
  1974年   7篇
  1973年   2篇
排序方式: 共有379条查询结果,搜索用时 15 毫秒
1.
It has been known for some time that bicarbonate reverses the inhibition, by formate under HCO3 --depletion conditions, of electron transport in thylakoid membranes. It has been shown that the major effect is on the electron acceptor side of photosystem II, at the site of plastoquinone reduction. After presenting a historical introduction, and a minireview of the bicarbonate effect, we present a hypothesis on how HCO3 - functions in vivo as (a) a proton donor to the plastoquinone reductase site in the D1-D2 protein; and (b) a ligand to Fe2+ in the QA-Fe-QB complex that keeps the D1-D2 proteins in their proper functional conformation. They key points of the hypothesis are: (1) HCO3 - forms a salt bridge between Fe2+ and the D2 protein. The carboxyl group of HCO3 - is a bidentate ligand to Fe2+, while the hydroxyl group H-bonds to a protein residue. (2) A second HCO3 - is involved in protonating a histidine near the QB site to stabilize the negative charge on QB. HCO3 - provides a rapidly available source of H+ for this purpose. (3) After donation of a H+, CO3 2- is replaced by another HCO3 -. The high pKa of CO3 2- ensures rapid reprotonation from the bulk phase. (4) An intramembrane pool of HCO3 - is in equilibrium with a large number of low affinity sites. This pool is a H+ buffering domain functionally connecting the external bulk phase with the quinones. The low affinity sites buffer the intrathylakoid [HCO3 -] against fluctuations in the intracellular CO2. (5) Low pH and high ionic strength are suggested to disrupt the HCO3 - salt bridge between Fe2+ and D2. The resulting conformational change exposes the intramembrane HCO3 - pool and low affinity sites to the bulk phase.Two contrasting hypotheses for the action of formate are: (a) it functions to remove bicarbonate, and the low electron transport left in such samples is due to the left-over (or endogenous) bicarbonate in the system; or (b) bicarbonate is less of an inhibitor and so appears to relieve the inhibition by formate. Hypothesis (a) implies that HCO3 - is an essential requirement for electron transport through the plastoquinones (bound plastoquinones QA and QB and the plastoquinone pool) of photosystem II. Hypothesis (b) implies that HCO3 - does not play any significant role in vivo. Our conclusion is that hypothesis (a) is correct and HCO3 - is an essential requirement for electron transport on the electron acceptor side of PS II. This is based on several observations: (i) since HCO3 -, not CO2, is the active species involved (Blubaugh and Govindjee 1986), the calculated concentration of this species (220 M at pH 8, pH of the stroma) is much higher than the calculated dissociation constant (Kd) of 35–60 M; thus, the likelihood of bound HCO3 - in ambient air is high; (ii) studies on HCO3 - effect in thylakoid samples with different chlorophyll concentrations suggest that the left-over (or endogenous) electron flow in bicarbonate-depleted chloroplasts is due to left-over (or endogenous) HCO3 - remaining bound to the system (Blubaugh 1987).Abbreviations DCMU 3-(3,4-dichlorophenyl)-1, 1-dimethylurea (common name: diuron) - PSII photosystem II - QA first plastoquinone electron acceptor of PSII - QB second plastoquinone acceptor of PS II  相似文献   
2.
The detergent Tween-20 solubilized preferentially portions of the marginal regions of Spinacea oleracea L. thylakoid membranes and, thus, opened the inside of the grana to the external media. Differential centrifugation. following Tween-20 solubilization. enabled separate fractions of grana and stromal-exposed membranes to be isolated. Analysis of Tween-20 solubilized material, after pelleting all membrane material by centrifugation at 100 000 g, revealed polypeptides associated with the coupling factor (CF1) particles, cytochrome b6/f and photosystem II complexes, suggesting that the marginal membranes contain these proteins. Concomitantly, the 100 000 g pellet was depleted in cytochrome b6/f and P700, determined spectroscopically, Thus. our results reveal the margin to be a distinct membrane region, which does not contain the light-harvesting centers of photosystem II (LHC II). The implication of these results, in terms of the energetic interaction of components of granal and stromalexposed membrane regions, is discussed.  相似文献   
3.
Continuous shoot growth monitoring in hydroponics   总被引:1,自引:0,他引:1  
A weighing apparatus for automatic recording of fresh weight of shoots of spinach plants ( Spinacia oleracea L., cv. Subito) growing in nutrient solution is described. The system was tested for 17 days in a controlled environment and enabled the determination of the relative growth rate (RGR) of the shoot fresh weight. Results from three consecutive growth experiments demonstrated diurnal fluctuations in the relative growth rate of the shoot fresh weight. In general, relative growth rates were between 0.32 and 0.36 day−1 16 days after sowing and decreased to between 0.11 and 0.18 day−1 during the 12 following days. The variance between three replicate growth curves was compared with the variance of a growth function fitted through destructively obtained spinach shoot weight data.  相似文献   
4.
The objective of this study was to determine if plant roots have to take up nitrate at their maximum rate for achieving maximum yield. This was investigated in a flowing-solution system which kept nutrient concentrations at constant levels. Nitrate concentrations were maintained in the range 20 to 1000 μM. Maximum uptake rate for both species was obtained at 100 μM. Concentrations below 100 μM resulted in decreases in uptake rate per cm root (inflow) for both spinach and kohlrabi by 1/3 and 2/3, respectively. However, only with kohlrabi this caused a reduction in N uptake and yield. Thus indicating that this crop has to take up nitrate at the maximum inflow. Spinach, however, compensated for lower inflows by enhancing its root absorbing surface with more and longer roots hairs. Both species increased their root length by 1/3 at low nitrate concentrations.  相似文献   
5.
Summary Irradiation of the principal photosystem II light-harvesting chlorophyll-protein antenna complex, LHC II, with high light intensities brings about a pronounced quenching of the chlorophyll fluorescence. Illumination of isolated thylakoids with high light intensities generates the formation of quenching centres within LHC II in vivo, as demonstrated by fluorescence excitation spectroscopy. In the isolated complex it is demonstrated that the light-induced fluorescence quenching: a) shows a partial, biphasic reversibility in the dark; b) is approximately proportional to the light intensity; c) is almost independent of temperature in the range 0–30°C; d) is substantially insensitive to protein modifying reagents and treatments; e) occurs in the absence of oxygen. A possible physiological importance of the phenomenon is discussed in terms of a mechanism capable of dissipating excess excitation energy within the photosystem II antenna.Abbreviations chla chlorophyll a - chlb chlorophyll b - F0 fluorescence yield with reaction centers open - Fm fluorescence yield with reaction centres closed - Fi fluorescence at the plateau level of the fast induction phase - LHC II light-harvesting chlorophyll a/b protein complex II - PS II photosystem II - PSI photosystem I - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   
6.
The polyene antibiotic amphotericin B inhibits photosynthetic electron transfer by Class II maize mesophyll chloroplasts, from water to FeCN, DCIP and diquat but not to plastocyanin. Photosystem 1 activity is also inhibited by amphotericin B, but ferredoxin-NADP reductase activity is not affected. The activity of all the photosynthetic electron transfer systems inhibited by amphotericin B can be restored by the addition of carrier amounts of plastocyanin. The results suggest that amphotericin B inhibits photosynthetic electron transfer by acting only at the plastocyanin site in the chain, and that the primary site of reduction of FeCN and DCIP from water by Class II chloroplasts lies on the reducing side of photosystem 1.  相似文献   
7.
Previously, a ferredoxin-type iron-sulfur protein, frx B protein, was identified in a high-salt extract of the purified thylakoid membrane of Chlamydomonas reinhardtii, a unicellular green alga. Polyclonal antibody was raised against a synthetic pentadecameric peptide with an amino acid sequence corresponding to the highly conserved region of the putative frx B proteins of 3 land plants [21]. In this report, protein(s) reacting strongly and specifically with this antibody was detected in the equivalent high-salt extract prepared from purified chloroplast of spinach and tobacco. One strong reaction polypeptide band from tobacco chloroplast was purified from SDS-polyacrylamide gel and subjected to endoproteinase lys C digestion. The resulting polypeptides were separated by reversed-phase chromatography. N-terminal sequencing of 3 purified polypeptides revealed that the protein is encoded by the frxB gene identified from DNA sequence analysis.  相似文献   
8.
The role of D1-protein in photoinhibition was examined. Photoinhibition of spinach thylakoids at 20°C caused considerable degradation of D1-protein and a parallel loss of variable fluorescence, QB-independent electron flow and QB-dependent electron flow. The breakdown of D1-protein as well as the loss of variable fluorescence and QB-independent electron flow were largely prevented when thylakoids were photoinhibited at 0°C. The QB-dependent electron flow markedly decreased under the same conditions. This inactivation may represent the primary event in photoinhibition and could be the result of some modification at the QB-site of D1-protein. Evidence for this comes from fluorescence relaxation kinetics following photoinhibition at 0°C which indicate a partial inactivation of QA --reoxidation. These results support the idea of D1-protein breakdown during photoinhibition as a two step process consisting of an initial inactivation at the QB-site of the protein followed by its degradation. The latter is accompanied by the loss of PS II-reaction centre function.Abbreviations Asc ascorbate - p-BQ 1, 4-benzoquinone - DAD diaminodurene - DPC diphenylcarbazide - DQH2 duroquinole - Fecy ferricyanide - MV methylviologen - QA primary quinone acceptor of PS II - QB secondary quinone acceptor of PS II - SiMo silicomolybdate  相似文献   
9.
When excited by ultraviolet radiation, leaves of a great number of species of higher plants exhibit emission of blue fluorescence, comparable in intensity to the red emission of chlorophyll. The fluorescence decay of the blue emission of spinach leaves recorded by single photon counting techniques is decomposed into exponential components and it is shown that at least three different components are present. The lifetime of the three components does not show significant variations with the excitation or emission wavelengths. The excitation and emission spectra of each component were determined. The nature of the chemical compounds which cause this emission is discussed in relation to these spectra.  相似文献   
10.
Effects of three inhibitors of quinol oxidation in the chloroplast cytochrome bf complex (stigmatellin, tridecylstigmatellin and dibromothymoquinone) were studied in an isolated system comprising Photosystem I (PS I) particles, plastocyanin (PC) and cytochrome bf complex, in the absence of quinol or quinone. Addition of these inhibitors increased the extent of cytochrome f oxidation after a laser flash created oxidised PS I reaction centre (P700) and PC, and decreased somewhat the extent of PC oxidation. The re-reduction of oxidised P700 was more complete than when inhibitor was absent. The data were simulated with reactions which included the putative reduction of cytochrome f by the Rieske centre (FeS) and different rate-coefficients according as to whether inhibitor was bound to the bf complex or not. It was concluded that under the conditions studied the Rieske centre donated electrons to oxidised cytochrome f and plastocyanin with an average rate coefficient of 35 s–1. This electron transfer was prevented by any of the three inhibitors, which also increased the equilibrium coefficient for the cytochrome f/PC reaction by a maximum factor of two. This increase corresponded to a decrease in the back reaction coefficient and an increase in the forward rate. The equilibrium coefficient for the reduction of oxidised P700 by PC was about 2 in the absence of inhibitor but increased to about 20 in their presence, but only if cytochrome bf complex was additionally present. This was attributed to the transient formation of complexes between P700 with bound plastocyanin, and bf complex. The operative mid-point potential of FeS, if that of cytochrome f is 370 mV, was 390 mV. Deviations in midpoint potentials (P700/plastocyanin) from solution values were attributed to the bound state of the reactants. Estimates were made of the binding coefficient of each of the three inhibitors to p-sites in the cytochrome bf complex in the absence of competing quinol. A stoichiometry of two inhibitors per bf dimer was necessary to cause the above changes in reduction potential of cyt f and PC. A result of one inhibitor per dimer was statistically unlikely, particularly in the case of tridecylstigmatellin.Abbreviations Cyt- cytochrome - DBMIB(H2)- 2,5-dibromo-3--ethyl-6-isopropyl-p-benzoquinone (reduced) - E m- midpoint reduction potential of a couple relative to the standard hydrogen electrode - e-t- electron transfer - FeS (or R)- Rieske iron-sulphur centre - HEPES- N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - Mega-9- nonoyl-N-methylglucamide - n-site (Qr-site)- quinone reduction site in cytochrome bf complex - PC- plastocyanin - p-site (Qo-site)- quinol oxidation site in cytochrome bf complex - PQ- plastoquinone - PSI- Photosystem I - P700- reaction centre in Photosystem I - TDS- tridecyl stigmatellin  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号