首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114篇
  免费   11篇
  国内免费   1篇
  2023年   2篇
  2022年   7篇
  2021年   11篇
  2020年   6篇
  2019年   11篇
  2018年   7篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   7篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   6篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有126条查询结果,搜索用时 46 毫秒
1.
Summary 2-Deoxy-d-glucose (2DG) and 5-thio-d-glucose (5TG) are glucose antimetabolites that are known to be selectively toxic to hypoxic cells grown as single cells or as monolayer cultures. These analogues were toxic to Chinese hamster V79 cells grown as multicell spheroids even under aerobic conditions. When spheroids, 500- to 600-μm diameter, were exposed to 7.5mm of these chemicals for 3 days, the number of clonogenic cells per spheroid dropped to 50% for 5-thio-d-glucose and 20% for 2-deoxy-d-glucose, relative to control values. Survivals were reduced to less than 1% when the experiment was repeated in glucose-free medium. Scanning electron photomicrographs of spheroids treated with 7.5mm of either analogue showed extensive damage to the outer cells. The cell killing observed was much more than could be predicted on the basis of the hypoxic fraction known to be present in these spheroids. The crowded tumor-like environment may make the cells vulnerable to the cytotoxic action of glucose analogues and other glycolytic inhibitors. Supported by the Ontario Cancer Treatment and Research Foundation, London Clinic.  相似文献   
2.
PurposeTo develop an on-lattice agent-based model describing the growth of multicellular tumor spheroids using simple Monte Carlo tools.MethodsCells are situated on the vertices of a cubic grid. Different cell states (proliferative, hypoxic or dead) and cell evolution rules, driven by 10 parameters, and the effects of the culture medium are included. About twenty spheroids of MCF-7 human breast cancer were cultivated and the experimental data were used for tuning the model parameters.ResultsSimulated spheroids showed adequate sizes of the necrotic nuclei and of the hypoxic and proliferative cell phases as a function of the growth time, mimicking the overall characteristics of the experimental spheroids. The relation between the radii of the necrotic nucleus and the whole spheroid obtained in the simulations was similar to the experimental one and the number of cells, as a function of the spheroid volume, was well reproduced. The statistical variability of the Monte Carlo model described the whole volume range observed for the experimental spheroids. Assuming that the model parameters vary within Gaussian distributions it was obtained a sample of spheroids that reproduced much better the experimental findings.ConclusionsThe model developed allows describing the growth of in vitro multicellular spheroids and the experimental variability can be well reproduced. Its flexibility permits to vary both the agents involved and the rules that govern the spheroid growth. More general situations, such as, e. g., tumor vascularization, radiotherapy effects on solid tumors, or the validity of the tumor growth mathematical models can be studied.  相似文献   
3.
Cytotechnology - Six extracts were obtained from plant species Hypericum perforatum L., collected at Samsun in Turkey. The aim of this study was to examine the mechanisms of the anticancer activity...  相似文献   
4.
Previously we reported that, lactic acid bacteria (LAB) can induce human dermal fibroblast (HDF) cells to form multipotent cell clusters which are able to transdifferentiate into three germ layer derived cell lineages. Later on, we confirmed that ribosome is responsible for the LAB-induced transdifferentiation and ribosomes from diverse organisms can mimic the LAB effect on HDF cells. In our present study we have shown that, upon incorporation of ribosomes, non-small cell lung cancer cell line A549 and gastric tubular adenocarcinoma cell line H-111-TC are transformed into spheroid like morphology those can be transdifferentiated into adipocytes and osteoblast. Our qPCR analysis has revealed that, during the formation of ribosome induced cancer cell spheroids, the expression of the cancer cell associated markers and cell cycle/proliferation markers were altered at different time point. Through our investigation, here we report a novel and a non-invasive approach for cancer cell reprogramming by incorporating ribosomes.  相似文献   
5.
《Autophagy》2013,9(11):1687-1692
Mitochondrial homeostasis is critical to cellular homeostasis, and mitophagy is an important mechanism to eliminate mitochondria that are superfluous or damaged. Multiple events can be involved in the recognition of mitochondria by the phagophore, and the key one is the priming of the mitochondria with specific molecular signatures. PARK2/Parkin is an E3 ligase that can be recruited to depolarized mitochondria and is required for mitophagy caused by respiration uncoupling. PARK2 induces ubiquitination of mitochondrial outer membrane proteins, which are subsequently degraded by the proteasome. Why these PARK2-mediated priming events are necessary for mitophagy to occur is not clear. We propose that they are needed to prevent a default pathway that would be inhibitory to mitophagy. In the default pathway depolarized and fragmented mitochondria undergo a dramatic three-dimensional conformational change to become mitochondrial spheroids. This transformation requires mitofusins; however, PARK2 inhibits this process by causing mitofusin ubiquitination and degradation. The spherical transformation may prevent recognition of the damaged mitochondria by the autophagosome, and PARK2 ensures that no such transformation occurs in order to promote mitophagy. Whether the formed mitochondrial spheroids functionally represent an alternative mitigation to mitophagy or an adverse consequence in the absence of PARK2 has yet to be determined.  相似文献   
6.
7.

Background

We describe an in vitro tumour model for targeted radiotherapy and gene therapy that incorporates cell population heterogeneity.

Materials and methods

Transfectant mosaic spheroids (TMS) and transfected mosaic monolayers (TMM) are composed of two cell populations derived from a single cell line. The cells of one population were transfected with the noradrenaline transporter gene (NAT), allowing active uptake of a radiolabelled targeting agent meta‐[131I]iodobenzylguanidine ([131I]MIBG); the other population of cells was derived from the same parent line and transfected with a marker gene – green fluorescent protein (GFP). After treatment with [131I]MIBG, cell kill was determined in TMM by clonogenic assay and in TMS by clonogenic assay and spheroid growth delay.

Results

We have used the TMS model to assess the ‘radiological bystander effect’ (radiation cross‐fire) conferred by the β‐emitting radiopharmaceutical [131I] MIBG whose cellular uptake is facilitated by the transfected gene encoding NAT. We show that cell killing by [131I]MIBG in both TMS and TMM cultures increased in direct proportion to the fraction of NAT‐transfected cells and that the degree of cell killing against fraction transfected was greater in TMS, suggestive of a greater bystander effect in the three‐dimensional culture system.

Conclusions

TMS provide a useful model for assessment of the effectiveness of targeted radiotherapy in combination with gene therapy when less than 100% of the target cell population is expressing the NAT transgene. Further, this novel model offers the unique opportunity to investigate radiation‐induced bystander effects and their contribution to cell cytotoxicity in radiotherapy and other gene therapy applications. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   
8.
The handling of hepatocytes, a major cell population in the liver, is an important technique in both liver tissue engineering and hepatology. However, these cells are so fragile that it has been impossible to harvest hepatocytes with high viability from tissue culture dishes after a period of culture in vitro. In this study, we employed an artificial substrate for transfection of multilayer hepatocytes and harvested these cells with high viability after transfection. Hepatocytes cultured on an amphiphilic artificial substrate form multilayer aggregates (spheroids) in the presence of growth factors during gene transfection with cation liposomes. Compared to cells cultured on a collagen-coated plate, these spheroids are easily harvested with high viability by pipetting in EDTA solution. In addition, these spheroids rapidly spread on collagen after transfer from the artificial substrate, demonstrating that hepatocytes in the center of the spheroids were viable. Epidermal growth factor (EGF) increased the transfection efficiency into hepatocytes while hepatocyte growth factor (HGF) alone did not increase the efficiency. However, HGF synergestically increased the effect of EGF on transfection. Interestingly, this transfection required the process of spheroid formation because the gene was not transfected once the spheroid formation completed or under conditions where hepatocytes did not form spheroids. This method using spheroidal hepatocytes for in vitro transfection is promising for the development of ex vivo gene therapy.  相似文献   
9.
10.
Optical coherence tomography (OCT) was used to monitor the dynamics of tumour spheroid formation by the hanging drop method. In contrast to microscopy, the estimates obtained using OCT for the volume of the spheroid, were consistent with the measured changes in cell number as a function of time. The OCT images also revealed heterogeneous structures in the spheroids of ∼200 μm diameter. These corresponded to the necrotic regions identified by fluorescence of propidium iodide stained cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号