首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7295篇
  免费   223篇
  国内免费   56篇
  2024年   34篇
  2023年   375篇
  2022年   246篇
  2021年   318篇
  2020年   430篇
  2019年   522篇
  2018年   493篇
  2017年   366篇
  2016年   430篇
  2015年   279篇
  2014年   558篇
  2013年   1062篇
  2012年   124篇
  2011年   127篇
  2010年   118篇
  2009年   135篇
  2008年   140篇
  2007年   138篇
  2006年   100篇
  2005年   166篇
  2004年   129篇
  2003年   118篇
  2002年   136篇
  2001年   101篇
  2000年   66篇
  1999年   65篇
  1998年   91篇
  1997年   64篇
  1996年   60篇
  1995年   36篇
  1994年   37篇
  1993年   32篇
  1992年   23篇
  1991年   19篇
  1990年   26篇
  1989年   43篇
  1988年   37篇
  1987年   28篇
  1986年   23篇
  1985年   37篇
  1984年   49篇
  1983年   48篇
  1982年   31篇
  1981年   34篇
  1980年   21篇
  1979年   22篇
  1978年   9篇
  1977年   10篇
  1975年   4篇
  1974年   6篇
排序方式: 共有7574条查询结果,搜索用时 31 毫秒
1.
Since their discovery, matrix vesicles (MVs) containing minerals have received considerable attention for their role in the mineralization of bone, dentin and calcified cartilage. Additionally, MVs' association with collagen fibrils, which serve as the scaffold for calcification in the organic matrix, has been repeatedly highlighted. The primary purpose of the present study was to establish a MVs–mimicking model (PEG-S-ACP/micelle) in vitro for studying the exact mechanism of MVs-mediated extra/intra fibrillar mineralization of collagen in vivo. In this study, high-concentration serine was used to stabilize the amorphous calcium phosphate (S-ACP), which was subsequently mixed with polyethylene glycol (PEG) to form PEG-S-ACP nanoparticles. The nanoparticles were loaded in the polysorbate 80 micelle through a micelle self-assembly process in an aqueous environment. This MVs–mimicking model is referred to as the PEG-S-ACP/micelle model. By adjusting the pH and surface tension of the PEG-S-ACP/micelle, two forms of minerals (crystalline mineral nodules and ACP nanoparticles) were released to achieve the extrafibrillar and intrafibrillar mineralization, respectively. This in vitro mineralization process reproduced the mineral nodules mediating in vivo extrafibrillar mineralization and provided key insights into a possible mechanism of biomineralization by which in vivo intrafibrillar mineralization could be induced by ACP nanoparticles released from MVs. Also, the PEG-S-ACP/micelle model provides a promising methodology to prepare mineralized collagen scaffolds for repairing bone defects in bone tissue engineering.  相似文献   
2.
We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid–ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.  相似文献   
3.
Metabolism is recognized as an important driver of cancer progression and other complex diseases, but global metabolite profiling remains a challenge. Protein expression profiling is often a poor proxy since existing pathway enrichment models provide an incomplete mapping between the proteome and metabolism. To overcome these gaps, we introduce multiomic metabolic enrichment network analysis (MOMENTA), an integrative multiomic data analysis framework for more accurately deducing metabolic pathway changes from proteomics data alone in a gene set analysis context by leveraging protein interaction networks to extend annotated metabolic models. We apply MOMENTA to proteomic data from diverse cancer cell lines and human tumors to demonstrate its utility at revealing variation in metabolic pathway activity across cancer types, which we verify using independent metabolomics measurements. The novel metabolic networks we uncover in breast cancer and other tumors are linked to clinical outcomes, underscoring the pathophysiological relevance of the findings.  相似文献   
4.
Human pancreatic stellate cells (HPSCs) are an essential stromal component and mediators of pancreatic ductal adenocarcinoma (PDAC) progression. Small extracellular vesicles (sEVs) are membrane-enclosed nanoparticles involved in cell-to-cell communications and are released from stromal cells within PDAC. A detailed comparison of sEVs from normal pancreatic stellate cells (HPaStec) and from PDAC-associated stellate cells (HPSCs) remains a gap in our current knowledge regarding stellate cells and PDAC. We hypothesized there would be differences in sEVs secretion and protein expression that might contribute to PDAC biology. To test this hypothesis, we isolated sEVs using ultracentrifugation followed by characterization by electron microscopy and Nanoparticle Tracking Analysis. We report here our initial observations. First, HPSC cells derived from PDAC tumors secrete a higher volume of sEVs when compared to normal pancreatic stellate cells (HPaStec). Although our data revealed that both normal and tumor-derived sEVs demonstrated no significant biological effect on cancer cells, we observed efficient uptake of sEVs by both normal and cancer epithelial cells. Additionally, intact membrane-associated proteins on sEVs were essential for efficient uptake. We then compared sEV proteins isolated from HPSCs and HPaStecs cells using liquid chromatography–tandem mass spectrometry. Most of the 1481 protein groups identified were shared with the exosome database, ExoCarta. Eighty-seven protein groups were differentially expressed (selected by 2-fold difference and adjusted p value ≤0.05) between HPSC and HPaStec sEVs. Of note, HPSC sEVs contained dramatically more CSE1L (chromosome segregation 1–like protein), a described marker of poor prognosis in patients with pancreatic cancer. Based on our results, we have demonstrated unique populations of sEVs originating from stromal cells with PDAC and suggest that these are significant to cancer biology. Further studies should be undertaken to gain a deeper understanding that could drive novel therapy.  相似文献   
5.
The presence of a protease has been demonstrated in sperm of the solitary ascidian, Halocynthia roretzi, by using t-butyloxycarbonyl-L-Val-L-Pro-L-Arg-4-methylcoumaryl-7-amide (Boc-Val-Pro-Arg-MCA) and other arginyl or lysyl MCA derivatives as substrates. Several properties of the enzyme were investigated in a crude extract. The activity had a pH optimum near 8.0 and was enhanced by the addition of CaCl2. The Km value of 87μM was determined for Boc-Val-Pro-Arg-MCA under the optimal conditions. An apparent molecular weight was estimated to be 35,000 by gel filtration. The enzyme was inhibited with diisopropyl fluorophosphate, leupeptin, antipain, p-aminobenzamidine, Val-Pro-Arg-CH2Cl, and soybean trypsin inhibitor, but scarcely inhibited with chymostatin, elastatinal, p-chloromercuribenzoic acid, tosyl-Lys-CH2Cl, and tosyl-Phe-CH2Cl. Boc-Val-Pro-Arg-MCA, the most susceptible of the substrates examined, showed the most effective inhibition against fertilization of ascidian eggs. Thus, this enzyme in ascidian sperm extract has features closely similar to mammalian acrosin [EC 3.4.21.10], and we conclude that the enzyme is involved in fertilization as one of the lysins.  相似文献   
6.
7.
Wild animal genetic resource banking (GRB) represents a valuable tool in conservation breeding programs, particularly in cases involving endangered species such as the golden‐headed lion tamarin (Leontopithecus chrysomelas). Thus, we aimed to assess a sperm freezing protocol for golden‐headed lion tamarins using two different exenders: BotuBOV® (BB) and Test Yolk Buffer® (TYB). Ejaculates were collected by penile vibrostimulation from animals housed at São Paulo Zoological Park Foundation, São Paulo, Brazil, and after immediate analysis, two aliquots were diluted in BB and TYB. Postthawing samples were evaluated for total and progressive motility, plasma membrane and acrosome integrities, mitochondrial activity, susceptibility to oxidative stress, and sperm–egg‐binding. No differences between BB and TYB were found for most seminal parameters, except for acrosome integrity and susceptibility to oxidative stress (in both cases BB showed higher values). However, in spite of these differences and regardless of the extender used, postthaw sperm motility and viability with the described protocol were encouraging (on average >50% and >80%, respectively), indicating that sperm cryopreservation may be a short‐term measure for the conservation of golden‐headed lion tamarins.  相似文献   
8.
Newborn rabbits depend on a daily nursing interaction with the mother to gain milk and to survive. During this interaction, they localise and seize the nipples displaying a typical behaviour triggered by maternal odour cues. The mammary pheromone constitutes such a signal in domestic rabbits: it elicits sucking-related movements in more than 90% of the pups. However, some newborns remain unresponsive to the presentation of the pheromone, even pups apparently healthy and highly motivated to suck. The main goal of the present study was therefore to explore the link between the unresponsiveness of rabbit pups to the mammary pheromone and their growth and survival in breeding conditions. To that end, 293 newborns from 30 litters were tested for their head searching-oral grasping responses to the mammary pheromone on days 1 and 3, and their milk intake and mortality were followed up from days 1 to 21. It was hypothesised that unresponsive newborns would have subsequent difficulties in finding nipples, sucking and surviving. Early weight and success in milk intake were further considered as mediating factors in growth and viability. The results showed that pups that were unresponsive to the mammary pheromone on day 1 were less successful in gaining milk and had a higher rate of mortality than the responsive pups. However, this impact was modulated by the weight of pups: it appeared only in the lightest newborns. Moreover, this impact vanished on day 3. On the other hand, the pup weight and sucking success on days 1 to 3 strongly influenced viability and growth during the period extending from days 1 to 21. Taken together, the results show that the day-1 responsiveness of rabbit pups to the mammary pheromone can be considered as an indicator of individual viability in pups having a small weight (<48 g on day 1). The predictive validity of the pups’ pheromonal reactivity seems however time-limited as it works only during the first, but crucial, postnatal days.  相似文献   
9.
Heat shock protein 90 (Hsp90) as a molecular target for oncology therapeutics has attracted much attention in the last decade. The Hsp90 multichaperone complex has important roles in the growth and/or survival of cancer cells. Cdc37, as a cochaperone, associates kinase clients to Hsp90 and promotes the development of malignant tumors. Disrupting the Hsp90–Cdc37 interaction provides an alternative strategy to inhibit the function of Hsp90 for cancer therapy. Celastrol, as a natural product, can disrupt the Hsp90–Cdc37 interaction and induce degradation of kinase clients. The study conducted here attempted to elucidate the structure–activity relationship of celastrol derivatives as Hsp90–Cdc37 disruptors and to improve the druglike properties. 23 celastrol derivatives were designed, synthesized, and the biological activities and physicochemical properties were determined. The derivative CEL20 showed improved Hsp90–Cdc37 disruption activity, anti-proliferative activities as well as druglike properties. Additionally, CEL20 induced clients degradation, cell cycle arrest and apoptosis in Panc-1 cells. This study can provide reference for the discovery of novel Hsp90–Cdc37 disruptors.  相似文献   
10.
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host–pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号